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ABSTRACT 

The Earth’s magnetic field supports cold and hot plasma at altitudes higher than 1000 km, in 

the region called the magnetosphere. The hot plasma constitutes the Van Allen Radiation belt, 

composed of mainly high energy protons and electrons and interpenetrating the cold plasma. 

The plasma, especially near the Earth, are effectively trapped within the Earth’s dipole magnetic 

field.  

However, these highly energetic charged particles are sometimes precipitated to lower altitudes 

due to electromagnetic fluctuations in the static geomagnetic field. These particles can cause 

damages to satellites and health hazards for astronauts in Low Earth Orbits (LEO) altitudes, 

500 to 1000 km. They are also thought to be the cause of the magnificent aurora borealis in the 

Arctic and Antarctic regions.  

This study aims at understanding the nature and statistics of the precipitated high energy 

particles caused due to electromagnetic noise in the Van Allen radiation belts. In this report, a 

test particle analysis of the scattering of high energy particles by shear Alfven noise in the Van 

Allen radiation belts is presented.  Though there are several wave modes supported by the 

magnetosphere, the shear Alfven wave mode was chosen for this study as they travel along the 

magnetic field line and remain confined within a narrow region.  

The Alfven wave noise was generated by carrying out a Finite Difference Time Domain 

(FDTD) simulation in Orthogonal Dipole Coordinate system with realistic plasma parameters 

and perfectly reflecting ionosphere boundary conditions. The shear Alfven wave was modelled 

using the Linearized Magneto-hydrodynamic (MHD) theory, and it is valid only for frequencies 

lesser than Ion Cyclotron frequencies.  

The simulation results showed a considerable scattering of the equatorial pitch angle of 

particles. The results closely matched the theoretical estimates derived from simple physical 

arguments. From the equatorial pitch angle distribution, the statistics of the precipitated 

particles were obtained in terms of the scattering of mirror point altitudes of the particles. 
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CHAPTER 1 

1. INTRODUCTION

The subject of the present work deals with the propagation of low-frequency shear 

Alfven waves and its interaction with the trapped charged particles in the Earth’s inner 

magnetosphere. This section is a brief introduction containing the background, outline and 

applications of the presented work.  

1.1. Background 

Above an altitude of about 1000 km, the Earth is surrounded by the Van-Allen 

Radiation belts that contain highly energetic charged particles (mainly protons and electrons) 

that are trapped within the geo-magnetic field. These highly energetic particles, are sometimes 

precipitated to lower altitudes, and can cause damages to satellites and health hazards for 

astronauts in Low Earth Orbits (500 to 1000 km). These Energetic plasma particles which can 

affect our technology, are also thought to be contributors of the aurora borealis in the northern 

and southern polar regions. The precipitation of these particles are caused mainly due to electro-

magnetic fluctuations within the Van-Allen Radiation belts, and hence it is important to 

understand how these fluctuations affect the trajectories of these charged particles.  

1.1.1. The Earth’s Inner Magnetosphere 

The Earth’s immediate environment consists of 

1. The neutral atmosphere (up to 60 km above the Earth’s surface)

2. The ionosphere, a region of highly ionized gas (heavy ions, protons and electrons) as

well as neutral particles (extending up to 1000 km)

3. The magnetosphere consisting mainly of protons and electrons (extending up to

100,000 km)

There is an abrupt density increase in charged particles (cold plasma) as we move from the 

neutral atmosphere-ionosphere boundary (at approximately 300 km). However, there is no such 

sharp boundary between the ionosphere and the magnetosphere. In the magnetosphere, the 

behaviour of the plasma is controlled by the geomagnetic field. The solar wind exerts pressure 

on the magnetosphere, compressing it on the sun side (creating a boundary around 10 RE known 

as the magnetospause) and extending it into a long tail on the night side. Figure 1.1 depicts the 

entire magnetosphere.   
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However, the geo-magnetic field in the Inner Magnetosphere (extending from 2 RE up to 7 RE), 

can be approximated to a dipole inclined with respect to the Earth’s axis of rotation by about 

110. Features of the inner-magnetosphere are sketched in Figure 1.2. The plasma near the Earth, 

within the inner-magnetosphere, is ‘frozen in’ to the geomagnetic field. This region that extends 

to about 4 RE is called the plasmasphere. The plasmasphere is in approximate equilibrium with 

the ionosphere. The boundary of the plasmasphere, called the plasmapause, separates the 

magnetospheric plasma from the plasma co-rotating with the Earth in the plasmaphere.  

The bulk of the plasma within the plasmasphere is composed mainly of cold electrons and 

protons with energies of a few electron volts, and is relatively dense with concentrations of 102 

to 104 particles/cm3. This inner-magnetosphere region that hosts the Inner Van-Allen Radiation 

belts is the region of interest in the present work.  

1.1.2. The Van-Allen Radiation Belts 

Interpenetrating the cold plasma of the plasmasphere, the inner-magnetosphere is also 

populated with energetic population of charged particles (hot plasma), which constitute the Van-

Allen Radiation belts. This hot plasma contains electrons and protons of energy > 10 keV to 

100 MeV, that are magnetically trapped within the geo-magnetic field.  

The source and loss processes of these energetic particles are not completely understood [1], 

but one possibility is that the particles of the solar wind enter the magnetosphere through the 

tail, and are accelerated along the magnetic field lines and enter the plasmasphere. An important 

loss process for the radiation belt particles is wave-particle interactions. The magnetosphere is 

extremely rich in the kinds of waves that it supports. It supports wave modes in a broad range 

of frequencies from 1 Hz to 100 MHz. Some of these modes (e.g., the whistler mode) can 

interact with energetic particles and scatter them in energy and pitch angle, the latter being the 

angle of inclination of the particle velocity vector with respect to the magnetic field direction. 

As a result of these perturbations some particles are precipitated out of the radiation belts and 

into the atmosphere where they are lost through collisions with the neutral gas.  

 The energetic charged particles execute three types of periodic motion: 

1. a helical gyro motion around the static magnetic field lines,

2. mirroring motion (back and forth) between the northern and southern hemispheres

3. relatively slow drift around the Earth

A schematic of the radiation belts is shown in Figure 1.3. Typical energetic charged particle 

motion is depicted in Figure 1.4. 
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1.1.3. Wave-particle Interactions 

Wave particle interaction in the radiation belts can be classified as being either incoherent or 

coherent. The former includes incoherent wide-band electromagnetic wave interactions, which 

is the focus of the present study. In these interactions the forces exerted by the wave on the 

particle are uncorrelated, and the particle execute a random walk in the velocity space.  

However, coherent interactions involve narrowband waves such as from ground transmitters, 

natural whistlers, triggered emissions and signals induced by large scale power grids. During 

such coherent interactions the wave induced forces are cumulative in nature, the particles 

therefore execute well defined motions and suffer significant perturbations in energy and 

momentum.  

The purpose of the presented research is to study the nature of particle precipitation caused due 

to interaction between incoherent shear Alfven wave noise and energetic charged particles in 

the radiation belts. Such a study will enable us to differentiate the effects of incoherent and 

coherent interaction on particles. This is important as one can expect low frequency noise to be 

present at low amplitudes all the time, and coherent interactions act only intermittently due to 

specific phenomena.   

1.2. Review of Previous Work 

Considerable work has been done on the pitch angle scattering of radiation belt particles 

by electromagnetic waves [2], [3], [4], [5], [6], [7]. The idea in these works have been that the 

trapped particle population interacts through cyclotron resonance with electromagnetic 

disturbances along its orbit and is subjected to a series of scattering that are random in both 

direction and size. Hence the individual particles of the population undergo a random walk in 

pitch angle, and diffusion in equatorial pitch angle space results. This diffusion can then be 

studied by calculating the incoherent diffusion coefficients and solving a Fokker-Planck 

equation [8]. 

The current study, however, incorporates wave propagation characteristics obtained from 

realistic plasma parameters in the region of interest, and simulates the incoherent diffusion of 

the energetic particles by solving the relativistic Lorentz force equation through a test-particle 

approach. The study focuses specifically on low-frequency shear Alfven wave mode. The 

propagation of this Alfven wave mode through the plasmasphere has been modelled using 3D 

Finite Difference Time Domain (FDTD) solutions of the Linearized Magneto-hydrodynamic 

equations, by including the realistic plasma parameters. Other simulations of Alfven wave 

propagation in the magnetosphere using FDTD has been carried out in the past decade [9] [10], 

however they do not attempt to study the Alfven wave interaction with the radiation belt 

particles.  
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1.3. Outline of the Report 

This report is organized into five chapters: 

Chapter 1 (current chapter) gives a brief introduction to the Earth’s magnetosphere, radiation 

belts, and broad types of wave-particle interactions, and related research work previously 

conducted. 

Chapter 2 explains the basic physics of the propagation of Alfven waves in the magnetosphere, 

and its interaction with charged particles. 

Chapter 3 describes the 3D FDTD simulations of wave propagation in Orthogonal Dipole 

Coordinates, and also the simulations of scattering of trapped charged particles due to shear-

Alfven wave noise in the plasmasphere. 

Chapter 4 presents the results of the equatorial pitch angle scattering of the trapped charged 

particles in the radiation belts due to the interaction with shear-Alfven wave noise modelled 

using realistic plasma parameters.  

Chapter 5 summarizes the results presented in Chapter 4, and concludes with a discussion of 

future extensions to this work including suggestions for experimental validation.  

1.4. Applications of the Present Work 

The Van Allen radiation belts are dynamic in nature, and understanding wave interaction with 

the energetic charge particle that it contains is essential to further understand its nature. The 

precipitated energetic particles from the radiation belts, can cause a variety of undesirable 

effects in spacecraft, components and biological systems. High energy electrons can cause di-

electric charge build-up deep inside large space-crafts that may lead in turn to destructive 

arcing. High energy protons in the inner radiation belt are the main contributors to ionising dose 

deposition in shielded components in space-crafts.  

The present work will help us understand the background pitch angle distribution of the 

radiation belt particles, and thereby understand the nature of the precipitated particles. Further 

extensions of this work can be used to identify the differences in the effect of scattering through 

incoherent and coherent wave-particle interaction.  
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Figure 1.1: Earth’s Magnetosphere being compressed by the solar wind and organized into a 

close cavity. (Illustrated by Eric A. Lord [11] ) 
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Figure 1.2: A cross section of the inner magnetosphere with dipole field lines, plasmaphere, 

plasmapause and the typical energetic charged particle trajectory along the field line. 
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Figure 1.3: Schematic cross-section of the Van Allen Radiation Belts that surround the Earth. 

The inner belt is mainly composed of energetic protons, while the outer belt is 

mainly energetic electrons. A newly identified radiation belt is shown in Orange, is 

composed of energetic nuclei that originated in the local interstellar medium. The 

orbit of the polar orbiting SAMPEX satellite, which has been studying the new belt, 

is indicated. (R. A. Mewaldt, A.C. Cummings and E.C. Stone, EOS, 1994) [11] 

Figure 1.4: Typical trajectory of an energetic charged particle trapped within the geo-magnetic 

field. [13] 
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CHAPTER 2 

2. BASIC PHYSICS INVOLVED

This section provides the theoretical background necessary to understand the simulations and 

results described in the next two chapters. This section includes physics of low-frequency 

Alfven wave propagation through magnetized plasma, motion of the trapped energetic charged 

particles in the radiation belts, and interaction of low frequency waves with these trapped charged 

particles. 

2.1. Low-Frequency Alfven Wave Propagation through Magnetized Plasma 

Consider low-frequency waves (i.e wave frequency ‘𝜔’ << ion cyclotron frequency ‘𝜔𝑐𝑖’) 

propagating in magnetized plasma i.e. a plasma immersed in magnetic field. These category of 

waves are known as Alfven waves. These waves are the normal modes of MHD, involve 

magnetic perturbations, and have characteristic velocities of the order of the Alfven 

velocity 𝑣𝐴 = 𝐵/√𝜇0𝜌. There are two distinct kinds of Alfven waves. One mode is called the

fast/compressional/magnetosonic mode (𝐵𝜇1 = 0) and the other slow/shear/Alfven mode

(𝐵𝜇1 = 0).

Assume, 𝑩 = 𝐵0 𝒆�̂�    (𝒆�̂� is directed along the magnetic field line in dipole coordinates)

We start with the linearized version of the faraday’s and ampere’s law.  

𝐹𝑎𝑟𝑎𝑑𝑎𝑦′𝑠 𝐿𝑎𝑤 ∶    ∇ × 𝑬𝟏 = −
𝜕𝑩𝟏

𝜕𝑡
…𝐸𝑞. 2.1 

𝐴𝑚𝑝𝑒𝑟𝑒′𝑠 𝐿𝑎𝑤 ∶    ∇ × 𝑩𝟏 = 𝜇0𝑱𝟏 + 𝜇0𝜖0

𝜕𝑬𝟏

𝜕𝑡
…𝐸𝑞. 2.2 

Here, 𝑩(𝒙, 𝒕) = 𝑩𝟎(𝒙) + 𝑩𝟏(𝒙, 𝒕), where |𝑩𝟏| ≪ |𝑩𝟎| and similarly for the other quantities.

In the present work we consider the zero-pressure MHD approximation, as it is suitable for low 

frequency waves and collision-less plasma. MHD essentially ignores parallel dynamics by 

invoking an ad hoc closure relation for the parallel current density in order to maintain overall 

current neutrality. The essence of the MHD modes comes from the polarization drift associated 

with a time-dependent perpendicular electric field namely, 

𝑢𝜎,𝑝𝑜𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
𝑚𝜎

𝑞𝜎𝐵2

𝑑𝐸⊥

𝑑𝑡
…𝐸𝑞. 2.3 [14] 



9 

 

The polarization drift results in a polarization current.  

𝐽⊥ = ∑𝑛𝜎𝑞𝜎𝒖𝜎,𝑝𝑜𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
𝜌

𝐵2

𝑑𝑬⊥

𝑑𝑡
 …𝐸𝑞. 2.4 

Where 𝜌 =  ∑𝑛𝜎𝑚𝜎 is the mass density. Eq. 2.4 can be recast as 

∴
𝑑𝑬⊥

𝑑𝑡
=

𝐵2

𝜇0𝜌
 𝜇0 𝑱⊥ = 𝑣𝐴

2 (∇ × 𝑩)⊥ − 𝑣𝐴
2𝜇0𝜖0

𝜕𝐸⊥

𝜕𝑡
 …𝐸𝑞. 2.5 

where, 𝑣𝐴
2 = 𝐵2

𝜇0𝜌⁄   is the Alfven Velocity. 

Simplifying further: 
𝑑𝑬⊥

𝑑𝑡
=

𝑣𝐴
2

(1+ 𝑣𝐴
2𝜇0𝜖0)

 (∇ × 𝑩)⊥  … 𝐸𝑞. 2.6, we get the following: 

𝑑𝑬⊥

𝑑𝑡
= 𝑉𝐴

2 (∇ × 𝑩)⊥ …𝐸𝑞. 2.7 

Where, 𝑉𝐴
2 = 𝑐2𝑣𝐴

2 (𝑐2 + 𝑣𝐴
2)⁄ = 1 (𝜖⊥𝜇0)⁄   and 𝜖⊥ = 𝜖0 (1 +

𝑐2

𝑣𝐴
2) 

Eq. 2.1 and the linearized version of Eq. 2.7 give the two basic coupled equations governing 

the Alfven wave modes, namely: 

∇ × 𝑬𝟏  =  −
𝜕𝑩𝟏

𝜕𝑡
 

𝑑𝑬⊥𝟏

𝑑𝑡
 =  

1

𝜖⊥𝜇0
 (∇ × 𝑩𝟏)⊥           …  𝑬𝒒 𝟐. 𝟖 

𝑤ℎ𝑒𝑟𝑒, 𝜖⊥  =  𝜖0 (1 +
𝑐2

𝑣𝐴
2) 

For Slow , Shear or Alfven wave : 𝑩𝝁𝟏 = 𝟎 

For Fast , Compressional or Magnetosonic wave : 𝑩𝝁𝟏 ≠ 𝟎 

Here 𝐵𝜇1 is the component of the wave’s linearized magnetic field along the geo-magnetic field 

line (which is along the 𝜇 axis in the orthogonal dipole coordinate system). Equation 2.8, cannot 

be solved analytically for spatially varying 𝑣𝐴 . However, if 𝑣𝐴 is constant the following 

simplified wave equations can be obtained for both the shear and compressional wave modes.  

If 𝑩 = 𝐵0�̂�𝝁, 

𝑆ℎ𝑒𝑎𝑟 𝐴𝑙𝑓𝑣𝑒𝑛 𝑊𝑎𝑣𝑒 ∶  
𝜕2𝑩⊥𝟏

𝜕𝑡2
= 𝑣𝐴

2
𝜕2𝑩⊥𝟏

𝜕𝑧2
  

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑎𝑙 𝐴𝑙𝑓𝑣𝑒𝑛 𝑊𝑎𝑣𝑒 ∶  
𝜕2𝐵𝜇1

𝜕𝑡2
= 𝑣𝐴

2∇2𝐵𝜇1  
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Comparing the dispersion relations: 

𝑆ℎ𝑒𝑎𝑟 𝐴𝑙𝑓𝑣𝑒𝑛 𝑊𝑎𝑣𝑒: 𝜔2 = 𝑘𝜇
2𝑣𝐴

2

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑎𝑙 𝐴𝑙𝑓𝑣𝑒 𝑊𝑎𝑣𝑒: 𝜔2 = 𝑘2𝑣𝐴
2

The above relations give us an idea about the basic differences in the nature of the two main 

Alfven wave modes. In the magnetosphere, as 𝑣𝐴 is spatially varying, the fields can only be 

solved for numerically/computationally. 

2.2. Motion of Trapped Energetic Charged Particles in the Radiation Belt 

The motion of a charge particle with charge 𝑞 and mass 𝑚 in an electric field 𝑬 and magnetic 

field 𝑩 can be described by the Newton-Lorentz equation: 

𝑑(𝛾𝑚𝒗)

𝑑𝑡
= 𝑞𝑬(𝒓) + 𝑞 𝒗 × 𝑩(𝒓)…𝑬𝒒. 𝟐. 𝟗 

Here 𝛾 = (1 −
𝑣2

𝑐2)
−

1

2
 is the relativistic factor and 𝒗 is the particle speed. 

Suppose  

𝑬 = 0 (this is the case of the geo-magnetic field) 

𝑩 is uniform 

Then the acceleration of the particle is always perpendicular to the velocity, and so the speed 

of the particle (and the factor 𝛾) remains constant. These particles move on helical paths parallel 

to the field vector. The circular part of this motion is called the “cyclotron frequency” Ω and 

the “cyclotron radius” 𝜌Ω are respectively given by:

Ω =
𝑞𝐵

𝛾𝑚
 ;  𝜌Ω =

𝛾𝑚𝑣⊥

𝑞𝐵

Where 𝐵 = |𝑩| is the uniform field strength and 𝑣⊥ is the component of the velocity

perpendicular to the field vector. If there are no other forces, the parallel velocity component 

𝑣∥ remains constant and hence the particle traces a helix with a pitch proportional to 𝑣∥.

2.2.1. Magnetic Dipole 

Now consider, a magnetic dipole field 𝑩𝒅𝒊𝒑(𝒓) with moment vector 𝑴 at location 𝒓 given by

𝑩𝒅𝒊𝒑(𝒓) =
𝜇0

4𝜋𝑟3
[3(𝑴. �̂�)�̂� −  𝑴] 
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Where 𝒓 = 𝑥 �̂�𝒙 + 𝑦 �̂�𝒚 + 𝑧 �̂�𝒛, 𝑟 = |𝒓| and �̂� = 𝒓/𝑟. For Earth 𝑴 = −𝑀�̂�𝑧, as the magnetic 

north is the geographic south. Substituting this in the above equation we get, 𝜇0𝑀 4𝜋⁄ = 𝐵0𝑅𝐸
3. 

Then the geo-magnetic field in Cartesian coordinates is given by: 

𝐵𝑑𝑖𝑝 = −
𝐵0𝑅𝐸

3

𝑟5
[3𝑥𝑧�̂�𝒙 + 3𝑦𝑧�̂�𝒚 + (2𝑧2 − 𝑥2 − 𝑦2)�̂�𝒛  …𝑬𝒒. 𝟐. 𝟏𝟎 

At the magnetic equator (𝑥 = 𝑅𝐸 , 𝑦 = 0, 𝑧 = 0), the field strength is measured to be 𝐵0 =

3.07 × 10−5 𝑇 .Here  𝑅𝐸 = 6.3712 × 106 𝑚, is the average radius of the Earth. 

Figure 2.1 shows trajectories of two protons with a kinetic energy of 15 MeV (a typical energy 

of a proton within the radiation belt) with its starting point at (1.5𝑅𝐸 , 0,0) and (4𝑅𝐸 , 0,0).  Both 

start with an equatorial pitch angle of 300, such that their velocities are defined as 𝑣0𝑥 =

0, 𝑣0𝑦 = 𝑣 𝑠𝑖𝑛 𝛼𝑒𝑞 , 𝑣0𝑦 = 𝑣 𝑐𝑜𝑠 𝛼𝑒𝑞. Both are followed through for 40 seconds.  

2.2.2. The Three Kinds of Motion 

The motion is mainly helical (i.e. cyclotron motion about the field line), but the non-uniformity 

of the field introduces the bounce and drift motions. The bounce motion is the periodic north-

south oscillation along the field line that goes through the helix. This motion slows down as the 

particles moves towards locations with a stronger magnetic field, reflecting back at “mirror 

points”. The bounce motion has a longer period than the cyclotron motion.   

The pitch angle of the helix is the angle between the particle velocity and the magnetic field 

and is given by 𝛼 = tan−1(𝑉⊥/𝑉∥). The magnetic moment of the gyrating particle can be shown 

to be a constant in the dipole magnetic field [1]. This requires (sin2 𝛼) (𝐵) =  constant⁄ , and 

it enables us to determine the pitch angle of a particle at any point in the magnetic field line, 

provided you know the pitch angle and magnetic field of a reference point along the helical 

path of the gyrating particle. Since the dipole field is symmetric about the equator, knowing the 

equatorial pitch angle (𝛼𝑒𝑞) and the magnetic field line about which the particle gyrates 

becomes sufficient to determine the cyclotron and bounce motion of the particle.  

The drift motion takes the particle around the Earth, perpendicular to the bounce motion and 

across the field lines. This motion is caused due to the gradient of the magnetic field along the 

particle’s path which results in a change in the gyro radius. Electrons and protons drift in 

opposite directions. In the geomagnetic field, protons drift westwards, electrons eastward. 

Particles in dipole-like fields are trapped on closed ‘drift shells’ as long as they are not disturbed 

by collisions or interactions with electromagnetic (EM) waves. The drift period is longer than 

the bounce period.  
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Figure 2.1: Trajectory of two protons of 15 MeV in the Earth’s dipole magnetic field, generated 

by the 3-D Trajectory Solver described in Section 3.4 developed by the author. 

Isometric (above) and Top view (below) of the particle trajectories. 
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In a dipole field, the bounce motion period 𝜏𝑏 and the drift motion 𝜏𝑑 are approximately given 

by [1] 

𝜏𝑏 ≈ 0.117 (
𝑅0

𝑅𝐸
)
𝑐

𝑣
 [1 − 0.4635(sin𝛼𝑒𝑞)

3
4]…𝐸𝑞. 2.11 

𝜏𝑑 ≈
2𝜋𝑞𝐵0𝑅𝐸

3

𝑚𝑣2
 (

1

𝑅0
) [1 −

1

3
(sin𝛼𝑒𝑞)

0.62
]…𝐸𝑞. 2.12 

Here 𝛼𝑒𝑞 is the equatorial pitch angle of the particle. Equatorial pitch angle can be used to 

calculate the mirror points of the particles in a dipole magnetic field. [15] 

sin2 𝛼𝑒𝑞 =
sin6 𝜃𝑚

√1 + 3 cos2 𝜃𝑚

 …𝐸𝑞. 2.13 

2.2.3. Loss cone angle 

Particle with large pitch angles have mirror points located at high altitudes, and those with 

smaller pitch angles have mirror points at lower altitudes. If the pitch-angle is too small then 

the mirror points enter the Earth’s atmosphere, and the particles are lost via collision with 

neutral particles. Neglecting the thickness of the atmosphere, we can say that all particles whose 

mirror points lie inside the Earth are lost via collisions. It follows from Eq. 2.13 that the 

equatorial loss cone [15] is approximately: 

   

sin2 𝛼𝑙 =
sin6 𝜃𝐸

√1 + 3 cos2 𝜃𝐸

 …𝐸𝑞. 2.13 

Note that, 

sin2 𝜃𝐸 = 𝐿−1 

⟹ sin2 𝛼𝑙 = (4𝐿6 − 3𝐿5)−0.5  

⟹ 𝛼𝑙 = sin−1(4𝐿6 − 3𝐿5) −0.25 …𝐸𝑞. 2.14 

2.3. Interaction of wave with particles in the radiation belts 

There are several kinds of resonant interactions possible. However, the focus of the current 

study is not resonant interaction, but scattering of the particles in the velocity space due to 

shear-Alfven wave noise. Here we derive pitch angle scattering rates from simple physical 

arguments.  
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Note tan𝛼 = 𝑉⊥/𝑉∥, and for large pitch angle particles where 𝑉⊥ ≅ 𝑉, we have

∆𝛼 = −
∆𝑉∥

𝑉⊥
 …𝐸𝑞. 2.15 

The maximum change in the parallel velocity of a charged particle interacting with the 

electromagnetic wave is given by [16] 

∆𝑉∥ = (
𝑞𝑉⊥𝐵𝑤

𝑚
)∆𝑡 …𝐸𝑞. 2.16 

∆𝛼 =
𝑒𝐵𝑤

𝑚
∆𝑡 …𝐸𝑞. 2.17 

Here 𝐵𝑤 is the magnetic field of the EM wave. Equation 2.16 can be used to estimate the

maximum pitch angle scattering that can occur due to EM wave interaction with particles.  

Figure 2.2: The variation of loss cone angle (equatorial pitch angle below which the particle is 

lost due to collision with the Earth’s atmosphere) with respect to the McIlwain L 

coordinate, calculated using Eq. 2.14.  
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CHAPTER 3 

3. DESCRIPTION OF SIMULATIONS

This chapter presents the description of the simulations used for the current research. The 

objective of the simulations are to estimate the equatorial pitch angle scattering (or scattering 

in the velocity space) of trapped energetic charged particles in the radiation belts, due to its 

interaction with shear Alfven wave noise. The following are the steps followed to achieve this 

objective: 

Figure 3.1: Flow chart of steps followed to attain the result 

3.1. 3-D FDTD Simulation in Orthogonal Dipole Coordinates 

Finite Difference Time Domain (FDTD) method is widely used to solve electromagnetic wave 

propagation problems. In the present work the FDTD algorithm is implemented in 3D 

Orthogonal Dipole Coordinates. [9] 

3.1.1. Orthogonal Dipole Coordinate System 

The orthogonal dipole coordinate system is a curvilinear coordinate system, like the spherical 

coordinates with its basis vectors orthogonal to each other at every point in the coordinate space. 

Dipole coordinates are useful in describing the propagation of MHD waves in the 

magnetosphere. There is a field aligned coordinate 𝜇 that makes it easy to specify the magnetic 

3.6 Acquire the scattered equatorial pitch angle distribution from the above.

3.5 Incorporate the shear Alfven wave noise into this 3-D trajectory solver.

3.4 Develop a simulation to solve 3-D trajectory of charged particle motion in the 
radiation belts. 

3.3 Generate shear Alfven wave noise from the results of the FDTD simulation.

3.2 Incorporate realistic plasma parameters from experimental data.

3.1 Develop a 3-D FDTD simulation in Orthogonal Dipole Coordinates.
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field intensity of the Geo-magnetic field, and also define the Alfven wave velocity 𝑣𝐴 

(corresponding to the plasma density) at different altitudes in the magnetosphere.  

However, a drawback is that the field aligned coordinate 𝜇 does not correspond to a constant 

radial distance, except at the poles. Since the ionosphere, which constitutes the lower boundary 

of the region of interest, is largely controlled by gravity, it would be at constant radial distance. 

Therefore presently, the ionospheric boundary can be incorporated only with an accuracy 

limited by the grid size. However, for generating shear Alfven wave noise confined to a 

particular magnetic field line, this issue does not pose any difficulty. 

The Dipole coordinate system, consists of three mutually orthogonal coordinates: (𝜈, 𝜙, 𝜇). 

These coordinates are defined as follows:  

𝜈 = −
𝑅𝐸 sin2 𝜃

𝑟
 

𝜙 = 𝜙 

𝜇 =
𝑅𝐸

2 cos 𝜃

𝑟2
 

Note that the coordinates (𝜈, 𝜙, 𝜇) are defined in terms of (𝑟, 𝜃, 𝜙) – spherical coordinate system.  

𝑅𝐸 − radius of earth, 𝜈 and 𝜙 label a magnetic field line, 𝜇 labels the position along the magnetic 

field line. 

The coordinates (𝜈, 𝜙, 𝜇) are also dimensionless. The unit vectors along these coordinates are 

as follows: 

�̂� =
�̂� sin𝜃 − �̂�2 cos 𝜃

√1 + 3 cos2 𝜃
  �̂� = −

�̂� 2 cos𝜃 − �̂� sin 𝜃

√1 + 3 cos2 𝜃
 �̂� = �̂�  

 

The scale factors for the Dipole coordinate system is as follows:  

ℎ𝜈 =
𝑟2

𝑅𝐸 sin𝜃  √1 + 3 cos2 𝜃
  

ℎ𝑝ℎ𝑖 = 𝑟 sin 𝜃 

ℎ𝜇 =
𝑟3

𝑅𝐸
2  √1 + 3 cos2 𝜃
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3.1.2. Simplified Maxwell’s equation for Electromagnetic waves 

𝜕𝑩

𝜕𝑡
= − ∇ × 𝑬 

𝜕𝑬

𝜕𝑡
=

1

𝜇0𝜖0
 ∇ × 𝑩 

The following Maxwell’s equations for electromagnetic waves were first used to develop the 

3-D FDTD algorithm in orthogonal dipole coordinate system. The equations were later 

modified to incorporate the MHD approximation necessary to model Alfven wave propagation. 

The above Maxwell’s equations were transformed into the orthogonal dipole coordinate system 

as below: 

 

𝜕𝐵𝜈

𝜕𝑡
= −

1

ℎ𝜙ℎ𝜇
 [ℎ𝜇

𝜕𝐸𝜇

𝜕𝜙
− ℎ𝜙

𝜕𝐸𝜙

𝜕𝜇
 ] ; 

 
𝜕𝐵𝜙

𝜕𝑡
= −

1

ℎ𝜇ℎ𝜈
 [ℎ𝜈

𝜕𝐸𝜈

𝜕𝜇
− ℎ𝜇

𝜕𝐸𝜇

𝜕𝜈
 ] ;  

𝜕𝐵𝜇

𝜕𝑡
= −

1

ℎ𝜈ℎ𝜙
 [ℎ𝜙

𝜕𝐸𝜙

𝜕𝜈
− ℎ𝜈

𝜕𝐸𝜈

𝜕𝜙
 ] 

𝜕𝐸𝜈

𝜕𝑡
=  

𝑐2

ℎ𝜙ℎ𝜇
 [ℎ𝜇

𝜕𝐵𝜇

𝜕𝜙
− ℎ𝜙

𝜕𝐵𝜙

𝜕𝜇
 ] ;  

𝜕𝐸𝜙

𝜕𝑡
=  

𝑐2

ℎ𝜇ℎ𝜈
 [ℎ𝜈

𝜕𝐵𝜈

𝜕𝜇
− ℎ𝜇

𝜕𝐵𝜇

𝜕𝜈
 ] ; 

 
𝜕𝐸𝜇

𝜕𝑡
=  

𝑐2

ℎ𝜈ℎ𝜙
 [ℎ𝜙

𝜕𝐵𝜙

𝜕𝜈
− ℎ𝜈

𝜕𝐵𝜈

𝜕𝜙
 ] 

 

Note: 

∇ × 𝐴 =
1

ℎ𝜈ℎ𝜙ℎ𝜇
 ||

ℎ𝜈𝑒�̂� ℎ𝜙𝑒�̂� ℎ𝜇𝑒�̂�

𝜕

𝜕𝜈

𝜕

𝜕𝜙

𝜕

𝜕𝜇
ℎ𝜈𝐴𝜈 ℎ𝜙𝐴𝜙 ℎ𝜇𝐴𝜇

|| 
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3.1.3. Discretization of the Maxwell’s equation 

These equations were discretised over time and space as follows by the author: 

𝐵𝜈|
𝜈,𝜙+

1
2
,𝜇+

1
2

𝑛+
1
2 = 𝐵𝜈|

𝜈,𝜙+
1
2
,𝜇+

1
2

𝑛−
1
2

−
∆𝑡

[ℎ𝜙ℎ𝜇]
𝜈,𝜙+

1
2,𝜇+

1
2

[

[ℎ𝜇𝐸𝜇]
𝜈,𝜙+1,𝜇+

1
2
 

𝑛
− [ℎ𝜇𝐸𝜇]

𝜈,𝜙,𝜇+
1
2
 

𝑛

∆𝜙

−

[ℎ𝜙𝐸𝜙]
𝜈,𝜙+

1
2
,𝜇+1 

𝑛
− [ℎ𝜙𝐸𝜙]

𝜈,𝜙+
1
2
,𝜇 

𝑛

∆𝜇
 ] 

𝐵𝜙|
𝜈+

1
2
,𝜙,𝜇+

1
2

𝑛+
1
2 = 𝐵𝜙|

𝜈+
1
2
,𝜙,𝜇+

1
2

𝑛−
1
2

−
∆𝑡

[ℎ𝜇ℎ𝜈]𝜈+
1
2,𝜙,𝜇+

1
2

[

[ℎ𝜈𝐸𝜈]
𝜈+

1
2
,𝜙,𝜇+1 

𝑛 − [ℎ𝜈𝐸𝜈]
𝜈+

1
2
,𝜙,𝜇 

𝑛

∆𝜇

−

[ℎ𝜇𝐸𝜇]
𝜈+1,𝜙,𝜇+

1
2
 

𝑛
− [ℎ𝜇𝐸𝜇]

𝜈,𝜙,𝜇+
1
2
 

𝑛

∆𝜈
 ] 

𝐵𝜇|
𝜈+

1
2
,𝜙+

1
2
,𝜇

𝑛+
1
2 = 𝐵𝜇|

𝜈+
1
2
,𝜙+

1
2
,𝜇

𝑛−
1
2

−
∆𝑡

[ℎ𝜈ℎ𝜙]
𝜈+

1
2,𝜙+

1
2,𝜇

[
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]
 
 
 
 

 

Here, 𝑛 refers to time instant and 𝜈, 𝜙, 𝜇 refers to the spatial locations. In FDTD the 𝐸-fields 

and 𝐵-fields cells in the simulation grids are interleaved in both space and time. And hence, 

𝑛 + 1, 𝑛 +
1

2
 refers to the new value of time and 𝑛 − 1, 𝑛 −

1

2
 refers to the previous value of 

time in a particular time-step 𝑛. Similarly 𝜈 + 1, 𝜈 +
1

2
 refers to the grid-cell towards the 

positive direction and 𝜈 − 1, 𝜈 −
1

2
  refers to the grid-cell towards the negative direction with 

respect to the current grid-cell 𝜈 in a particular time-step iteration.  

The above set of discretized equations are solved to obtain the field strengths in MATLAB by 

placing a source at a desirable location in the grid, and with the desired temporal variation and 

polarization. The performance of the simulations with the equations discretized in 3-D Dipole 

coordinates has not been compared with discretization in 3-D Cartesian coordinates in this 

work.  

Figure 3.2 and 3.3 shows the FDTD simulation grid in Orthogonal Dipole Coordinate Systems. 

Figure 3.4 and 3.5 shows an EM wave originating from a line source in 𝜇 = 0 plane with fields 

constant along 𝜙 i.e. (
𝜕

𝜕𝜙
= 0)  , propagating in Vacuum and spreading isotropically outward in 

𝜙 = 0 plane as expected. 
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Figure.2: Plane μ=0. Top view of the plasmasphere. Blue circle in the centre represents the 

Earth. 

 

Figure 3.3: Plane ϕ=0. Cross sectional view of the plasmasphere. Blue semi-circle towards the 

left-side of the figure represents one-half of the Earth. 
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Figure 3.4: Plane 𝜇 = 0. EM source with 𝐸𝜙 polarization, and 
𝜕

𝜕𝜙
= 0. 

 

Figure 3.5: Plane ϕ=0. EM source with 𝐸𝜙 polarization. EM wave originating from a line source 

in 𝜇 = 0 plane with 
𝜕

𝜕𝜙
= 0, propagating in Vacuum and spreading isotropically 

outward in 𝜙 = 0 plane as expected. 



22 

 

 

3.1.4. Linearized MHD Equations 

The FDTD algorithm can be modified to incorporate the Linearized MHD Equations, by 

replacing 𝜖0 with 𝜖⊥. [9] 

𝜕𝑩

𝜕𝑡
= − ∇ × 𝑬 ;        

𝜕𝑬⊥

𝜕𝑡
=

1

𝜇0𝜖⊥
 ∇ × 𝑩;         𝑬∥ = 𝟎   

𝜖⊥ = 𝜖0  (1 +
𝑐2

𝑣𝐴
2)   ; 𝑣𝐴 =

𝐵0

√𝜇0𝜌
;  VA =

1

𝜇0𝜖⊥
  

The equations are discretized in Orthogonal Dipole Coordinates in a manner similar to Section 

3.1.3. The only difference is that 𝑐 is replaced by 𝑉𝐴 and 𝐸𝜇  set to 0 as per the Linearized MHD 

approximation. 
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3.2. Acquiring Realistic Plasma Parameters 

In order to estimate the realistic value of 𝑣𝐴, Alfven wave velocity, realistic values for 𝐵0 

(magnetic field) and 𝜌 (plasma densities) obtained from existing models. 

3.2.1. Magnetic Field Intensity 

The International Geomagnetic Reference Field (IGRF) Model was used to acquire the realistic 

value of the magnetic field in regions of interest. A MATLAB function, igrf [17], capable of 

returning the magnetic field vector, at a particular time and position was used. (See Figure 3.6 

and 3.7) 

3.2.2. Plasma Density 

The electron and proton plasma densities have been acquired from the Global Core Plasma 

Model (GCPM) Version 2.4. [18] The model is capable of returning values of proton, electron, 

helium and oxygen densities in the magnetosphere, for the specific time, location, and planetary 

𝑘𝑝 index number. A FORTRAN code was written to extract data from the GCPM ver. 2.4. (See 

Figure 3.8 and 3.9) 

3.2.3. Alfven Wave Velocity 

From the acquired magnetic field intensity and plasma density, we can calculate the Alfven 

wave velocity in the regions of interest. (See Figure 3.10 and 3.11). Note that the Alfven wave 

velocity 𝑣𝐴 is not defined in the regions where plasma density 𝜌 is zero. 

𝑣𝐴 =
𝐵0

√𝜇0𝜌
…𝐸𝑞. 3.1 
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Figure 3.6: Plane 𝜇 = 0. Magnetic field intensity (𝐵0) in log scale. 

 

 

Figure 3.7: Plane ϕ=0. Magnetic field intensity (𝐵0) in log scale. 
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Figure 3.8: Plane μ=0. Electron (plasma) density (ρ) in log scale. 

 

 

Figure 3.9: Plane ϕ=0. Electron (plasma) density (ρ) in log scale. 
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Figure 3.10: Plane μ=0. Alfven wave velocity (𝑣𝐴) in log scale. 

 

 

Figure 3.11: Plane ϕ=0. Alfven wave velocity (𝑣𝐴) in log scale. 

 



27 

 

3.3. Generate Shear Alfven Wave Noise  

3.3.1. Sinusoidal Shear-Alfven Wave 

In the MHD limit, it is assumed that there is no parallel electric field (parallel to the magnetic 

field line). This approximation yields two wave modes: 1. Slow/Shear/Alfven wave mode     

(𝐵 = 𝐵⊥; 𝐵∥ = 0) and 2. Fast/Compressional/Magnetosonic mode (𝐵 = 𝐵∥, 𝐵∥ ≠ 0). Example of a 

Shear Alfven wave mode propagating along the magnetic field line obtained using the 3-D 

FDTD Simulations in Dipole Coordinates is shown in Figure 3.12.  

In Figure 3.12, the black lines define the boundaries of the simulation space, beyond which 

Perfectly Matched Layers (PML), with artificial conductivities are incorporated to absorb the 

wave and prevent it from reflecting back into the simulation space. The hemispherical black 

boundary line with radius 1 RE, represents the Earth’s surface. In this figure, a sinusoidal source 

(which is a line-source in 𝜇 = 0 plane, with its length along 𝜙 direction) is placed about 300 

km above the Earth’s surface, where the ionosphere plasma density is highest. The wave 

propagates upwards and downwards along the magnetic field line. The wave propagating 

downwards into the Earth’s neutral atmosphere and ground is absorbed by the PML, thereby 

stopping it from reflecting back into the simulation space. The simulation is stopped before the 

wave reaches the southern ionosphere boundary.   

 

Figure 3.12: Shear-Alfven-wave mode with sinusoidal source polarized in 𝐵𝜙 (𝐵𝜙 is ⊥ to the 

magnetic field line and k vector of the wave) 
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3.3.2. Dispersion Diagram of a Shear-Alfven Wave in the Plasmasphere 

 Now, a Discrete Space-Time Fast Fourier transform (DFFT) is implemented on the 

Shear-Alfven Wave signal that is travelling along the magnetic field line. The source signal was 

a Gaussian pulse with a bandwidth of 6000 Hz, centred at a frequency of 3000 Hz. The DFFT 

is done over the spatial distance ′𝑠′ along the field line, and time ′𝑡′.   

Here, we should note that the space-time DFFT cannot be applied directly over the signal 

extracted from the FDTD simulation, as the signal is a function of (𝜇, 𝑡). The signal should be 

transformed into (𝑠, 𝑡). This was done by converting the 𝜇 sample points to corresponding 

distance ′𝑠′ by multiplying it with the appropriate scale factor ℎ𝜇. These sample ′𝑠′ points are 

not uniform, i.e. the difference between each sample is unequal. For an accurate DFFT, the 

sample points must be equidistant from each other. This was done by doing spline interpolation 

of the signal at sample points which were equidistant from each other, from the existing data 

interspaced at uneven distances.  The space-time DFFT was then applied to this transformed 

signal to get the fields in the Fourier domain (𝜔, 𝑘). 

Discrete Space-Time Fourier Transform can be represented with the following equation: 

𝐵(𝜔, 𝜅) = ∑ ∑ 𝐵(𝑠, 𝑡)𝑒−𝑖2𝜋𝜅𝑠/𝑀𝑒−𝑖2𝜋𝜔𝑡/𝑁∆𝑡∆𝑠

𝑁−1

𝑡=0

𝑀−1

𝑠=0

 

Here 𝜅 is the wave number, 𝜔 is the frequency, and N and M are the number of time and space 

samples respectively.  

The signal which is used for the Space-Time DFFT is as long as 0.077 seconds, enough to reach 

the ionosphere boundary starting from the equatorial plane (𝜇 = 0). The ionosphere boundary 

condition is set to be perfectly reflecting.  

Figure 3.13 is the dispersion diagram of a Shear-Alfven Wave propagating along the magnetic 

field line with L=1.4286. It is produced by taking the Discrete Space-Time Fast Fourier 

Transform of the signal (𝐵𝜙(𝑠, 𝑡)) and normalizing it with the Discrete Time Fast Fourier 

Transform at the source point.  

The dispersion diagram shows that the shear-Alfven wave in L=1.4286 has its velocity ranging 

from 0.4175 × 10−8 to 1.3395 × 10−8 𝑚/𝑠 . This can be verified by calculating the 

theoretical Alfven Wave Velocity along L=1.4286 from Equation 3.1.  
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Figure 3.14: Alfven Wave Velocity in m/s along L=1.43 

Figure 3.14 shows the variation of theoretical Alfven Wave velocity along L=1.43. From Figure 

3.14, one can see that the velocity of the wave in the Dispersion Diagram lies between the 

maximum and minimum Alfven wave velocities calculated along L=1.4286.  

3.3.3. Randomizing the Phase-spectrum of the Shear-Alfven Wave 

Consider a case where the Gaussian shear-Alfven wave source (with bandwidth 6000Hz and 

centred at 3000Hz) is generated at one of the boundaries and allowed to propagate for 0.038 

seconds (enough to cover the entire length till the next boundary). Figure 3.15 and 3.16 shows 

the Amplitude and Phase spectrum respectively of such a shear-Alfven Wave. The phase 

spectrum represented in Figure 3.16, shows the constant phase lines, whose slope describes the 

phase velocity of the Alfven wave.  

Figure 3.17, is the randomized phase spectrum generated by the random number generator 

function, RAND in MATLAB. This randomized phase, when multiplied with the Amplitude of 

the Alfven wave in wavenumber-frequency domain, and operated on by Inverse Discrete Fast 

Fourier Transform will produce a space-time signal which is equivalent to simple random noise 

as shown in Figure 3.18. The random noise will however retain the amplitude spectrum of a 

shear-Alfven wave in the particular L-shell.  
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Figure 3.15: Amplitude Spectrum of the 𝐵𝜙 field of an Alfven Wave along L=1.4286. 

 

Figure 3.16: Phase Spectrum of the 𝐵𝜙 field of an Alfven Wave along L=1.4286. 

 

Figure 3.17: Randomized Phase Spectrum of the 𝐵𝜙 field generated by random number 

generator. 
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Figure 3.18: 𝐵𝜙  (t=0.94 ms) noise of 6000 Hz bandwidth along space.

A Discrete Space-Time FFT of Figure 3.18 will return back exactly an amplitude and phase 

spectrum as seen in Figure 3.15 and 3.16. The result of this section of the simulation is therefore 

Shear-Alfven Wave noise in the desired L-shell.  

3.4. 3-D Trajectory Solver for Charged Particles in the Radiation Belts 

This module implements the 4th order Runge-kutta method using the ODE45 function in 

MATLAB to solve the Newton-Lorentz force equation and determine the trajectory of a charged 

particle in the Earth’s Dipole magnetic field. 

Recall the Newton-Lorentz force equation: 

𝑑(𝛾𝑚𝒗)

𝑑𝑡
= 𝑞𝑬(𝒓) + 𝑞 𝒗 × 𝑩(𝒓)…𝑬𝒒. 𝟐. 𝟗 

Here 𝛾 = (1 −
𝑣2

𝑐2)
−

1

2
 is the relativistic factor and 𝒗 is the particle speed. 

The magnetic dipole field of the Earth is modelled by the following equation presented in 

Section 2.2.1: 

𝐵𝑑𝑖𝑝 = −
𝐵0𝑅𝐸

3

𝑟5
[3𝑥𝑧�̂�𝒙 + 3𝑦𝑧�̂�𝒚 + (2𝑧2 − 𝑥2 − 𝑦2)�̂�𝒛  …𝑬𝒒. 𝟐. 𝟏𝟎

Where 𝐵0 = 3.07 × 10−5 𝑇, 𝑅𝐸 = 6.3712 × 106 𝑚

The trajectory solver is capable of incorporating time-varying electric and magnetic fields in 

the Newton-Lorentz force equation. Apart from the particle’s trajectory, it can also generate the 
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trajectory of the gyrocentre (See Figure 3.19), gyro-radii, gyro-frequency along the trajectory 

of the particle and the equatorial pitch angle at the locations where the particle crosses the 

equatorial plane.  

 

Figure 3.19: The trajectory and the gyrocentre path of a 15 MeV proton in L-shell = 4 generated 

by the simulation module. 
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3.5. Incorporation of 3-D Alfven Wave noise into the 3-D Trajectory Solver 

The space-time varying Alfven wave noise fields (both 𝐵𝜙 
𝑛𝑜𝑖𝑠𝑒 and 𝐸𝜈

𝑛𝑜𝑖𝑠𝑒) are generated from 

the dispersion diagrams presented in Section 3.3, by enforcing an upper frequency limit of 

100 Hz (as ion cyclotron frequency 𝑓𝑐𝑖~200 𝐻𝑧 at L=1.4286). The 𝐵𝜙
𝑛𝑜𝑖𝑠𝑒 field is then 

normalized with 𝐵𝜙,𝑟𝑚𝑠
𝑛𝑜𝑖𝑠𝑒 =

 ∫(𝐵𝜙
𝑛𝑜𝑖𝑠𝑒(𝑡))

2
𝑑𝑡

∫ 𝑑𝑡
  and multiplied by 𝐵𝑤𝑎𝑣𝑒 = √2𝜇0𝑃, where 𝑃 is the 

wave power. This ensures that power of the Alfven wave noise is specified by the wave power 

value 𝑃 in watts. 𝐸𝜈 is then calculated as 𝐸𝜈
𝑛𝑜𝑖𝑠𝑒(𝑠) = 𝑣𝐴(𝑠) × 𝐵𝜙

𝑛𝑜𝑖𝑠𝑒(𝑠) . Both the 𝐵𝜙
𝑛𝑜𝑖𝑠𝑒(𝑠, 𝑡) 

and 𝐸𝜈
𝑛𝑜𝑖𝑠𝑒(𝑠, 𝑡)  are then incorporated into the Newton-Lorentz force equations after the 

appropriate coordinate transformation.  

𝑑(𝛾𝑚𝒗)

𝑑𝑡
= 𝑞𝑬𝒏𝒐𝒊𝒔𝒆(𝒓) + 𝑞 𝒗 × (𝑩𝒔𝒕𝒂𝒕𝒊𝒄(𝒓) + 𝑩𝒏𝒐𝒊𝒔𝒆(𝒓))…𝑬𝒒. 𝟑. 𝟐 

3.6.Acquiring the Equatorial Pitch Angle Distribution 

Every time the particle’s trajectory crosses the equatorial plane, the parallel and perpendicular 

velocities are recorded to estimate the equatorial pitch angle. By solving the trajectories of a 

1000 test particles with an initial pitch angle, the equatorial pitch angle after one-half bounce 

period is estimated. This gives the scattered equatorial pitch angle distribution due to the shear-

Alfven-wave noise with the specified wave power.  
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CHAPTER 4 

4. RESULTS

4.1. Input Parameters 

The simulations described in Section 3 was run with the following input parameters, and the 

scattered pitch angle distribution was obtained.  

Wave Power : 𝑃 = 6 × 10−9 𝑤𝑎𝑡𝑡𝑠

Wave frequency range    : 0 to 100 Hz 

L-shell   : 1.4286 

Type of particle  : 𝑃𝑟𝑜𝑡𝑜𝑛 

Energy of particle : 1 𝑀𝑒𝑉 

Time of exposure to noise : 1.1 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 (~ Half bounce period) 

Total number of particles : 1000 

Initial Equatorial Pitch Angle : 600

Note that the electric field noise was neglected in this particular simulation in order to compare 

it with the theoretical approximation described in Section 2.3.  

4.2. Scattering of Equatorial Pitch Angle Distribution 

Figure 4.1 shows both the initial and scattered equatorial pitch angle distribution. As described 

in Section 3.6, a test particle approach was followed where motion of a single charged particle, 

in this case a 1 MeV protons, was simulated in the Earth’s dipole field with Alfven wave noise 

superposed on it. This step was repeated 1000 times, to get a scattered pitch angle distribution 

for 1000 particles. The equatorial pitch angle, as described in 2.2.2, is a measure of the 

trajectory of the particle as the Earth’s dipole magnetic field is completely described.    

Figure 4.2, shows a Gaussian fit on the scattered equatorial pitch angle distribution. The fit 

gives a standard deviation 𝜎 = 8.70 for the distribution. From this, the Full Width at Half 

Maximum (𝐹𝑊𝐻𝑀 = 2.35 𝜎) of the equatorial pitch angle distribution was acquired:   

∆𝜶𝒔𝒊𝒎𝒖𝒍𝒂𝒕𝒊𝒐𝒏𝒔
𝒆𝒒

= 𝟐𝟎. 𝟒𝟒𝟎
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Using Equation 2.16: ∆𝑉∥ = (
𝑞𝑉⊥𝐵𝑤

𝑚
)∆𝑡 and Equation 2.15: ∆𝛼 = −

∆𝑉∥

𝑉⊥
  the maximum pitch 

angle scattering due to the magnetic noise produced by the Alfven wave is: 

∆𝜶𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆
𝒆𝒒

= 𝟐𝟑. 𝟗𝟎𝟎 

 

 

Figure 4.1: Initial (above) and scattered (below) equatorial pitch angle distribution (Total 

number of protons = 1000) 
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The scatter in the equatorial pitch angle distribution, is mainly due to the random force that is 

being exerted on the particle caused due to Alfven wave noise. This random force causes the 𝑉∥

and 𝑉⊥ of the particles to change, and hence the pitch angle (𝛼 = tan−1(𝑉⊥/𝑉∥))of the particles

also change. 

Figure 4.2: Gaussian fit on the scattered equatorial pitch angle distribution 

4.3.Scattering of Mirror Points 

The mirror point location for a charged particle undergoing helical motion in the Earth’s dipole 

field can be calculated directly from the value of the equatorial pitch angle of the particle.   

By solving Equation 2.13 mentioned in Section 2.2.3, 

sin2 𝛼𝑒𝑞 =
sin6 𝜃𝑚

√1 + 3 cos2 𝜃𝑚

we can find the polar angle of the mirror point 𝜃𝑚. With this we can find the mirror point

altitude by using the following formulae: 

𝑟𝑚 = 𝑅𝐸  (𝐿 sin2 𝜃𝑚 − 1)

Figure 4.3 shows how the particle’s mirror points also scatter through the interaction with the 

Alfven wave noise. Particles with mirror points below 0 km are lost forever due to collision 
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with the Earth’s surface (these are particles with equatorial pitch angle 𝛼𝑒𝑞 less than the loss 

cone angle 𝛼𝑙). Figure 4.4 shows the variation of the mirror point altitude of a particle in the L-

shell 1.4286 with equatorial pitch angle. The mirror point altitude of the initial distribution of 

particles (with the equatorial pitch angle = 600) is approximately 2175 km. 

 

Figure 4.3: Scattering of mirror point altitudes of the particles. 

 

Figure 4.4: Variation of mirror point altitude with equatorial pitch angle. 
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Note that the loss cone angle for a particle in the L-shell 1.4268 is about 300. This can be verified 

from Figure 2.2 and Figure 4.4. We can calculate the number of particles with the equatorial 

pitch angle (𝛼𝑒𝑞) less than the loss cone angle (𝛼𝑙) from the scattered equatorial pitch angle and 

mirror point altitude distributions obtained above.  

∴ The percentage of particles with 𝛼𝑒𝑞 less than 𝛼𝑙 = 0.3%. 

The simulation modules described in Section 3 can be used for predicting the scattering of pitch 

angles and mirror point altitudes for any initial distribution of particles.  
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CHAPTER 5 

5. CONCLUSION

5.1. Summary 

In this report, we have presented the 3D FDTD simulations developed in Orthogonal Dipole 

Coordinates which has been used to estimate the shear-Alfven wave noise in a particular L-

shell in the plasmasphere. We have also analysed the effect of the shear-Alfven noise of a 

specified power on the equatorial pitch angle distribution of charged particles using the Newton-

Lorentz force equations. In our study we have focused on the plasma and magnetic field 

parameters along L=1.4286 field line. This was chosen as it was within the L-shell of interest 

for the IIT Madras Student Satellite Project being developed for measuring precipitated 

particles.  

The shear-Alfven wave noise is seen to induce scattering of the equatorial pitch angle of the 

radiation belt particles. An equatorial pitch angle scattering of about FWHM = 20.440 was 

observed due to interaction with of shear-Alfven wave noise and thousand protons of 1 MeV 

kinetic energy and initial pitch angle of 600. The pitch angle scattering estimated by the 

simulation and that predicted by the approximate formulae (Eq. 2.15) are within ~40 of each 

other. This validates the overall correctness of the simulations and procedures followed. In this 

case the scattering resulted in 0.3% of the particles being lost from the radiation belts.  

5.2. Future Work 

The simulation tools developed for the present work are important for further analysis of the 

physics of wave-particle interaction in the radiation belts. However, in the present report only 

a single case of initial pitch angle distribution and wave power has been analysed. A parametric 

study has to be conducted in order to completely understand the behaviour of the particle 

distribution due to its interaction with shear-Alfven noise. In future, the effect on the pitch angle 

distribution due to interaction of coherent shear-Alfven wave can be studied by making minor 

modifications to the existing simulation modules.   

Furthermore, experimental validation of these simulations can be performed by accessing the 

data gathered by the recent NASA mission, named the Van-Allen Probes. The mission contains 

charged particle detectors (Relativistic Proton Spectrometer, RPS; Energetic Particle, 

Composition and Thermal Plasma Suite, ECT) and several other magnetic field and electric 

field sensors (Electric Field and Waves Suite, EFW; Electric and Magnetic Field Instrument 

Suite and Integrated Science, EMFISIS). The electric field and magnetic field data can be used 

to estimate the precipitation of particles in a particular L-shell, and then verified with flux 

changes observed in the data gathered by the charge particle detectors. 
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APPENDIX 1: Simulation Codes 

 

6.1. 3-D FDTD Simulations in Orthogonal Dipole Coordinate System 

This simulation module consists of the following MATLAB script files and functions: 

1. main.m : This is the main script file, that calculates the shear-Alfven wave noise, if the 

specific magnetic field line and plasma parameters are given. Specific input file : 

e_dat.mat is required to input the electron densities. The output is in the form of 

“calculate_fft.mat”.  

  

2. calculateh.m() : This is a function that takes in the 𝜈 and 𝜇 spatial coordinate arrays 

with the size of the 𝜙 array and 𝑅𝐸 value. It calculates the scale factors for the Dipole 

Coordinate System. Returns a 3-D matrix of scale factors with values at every spatial 

location in the simulations. 

 

3. calculateh1() : This is a function that takes in the 𝜈 and 𝜇 spatial coordinate arrays and 

𝑅𝐸 value. It calculates the scale factors for the Dipole Coordinate System. Returns a 2-

D matrix of scale factors with values at every spatial location in the simulations at 

arbitrary 𝜙. 

 

4. plot_mer() : Plots the distribution of the required electric or magnetic field in the 

meridional Plane of the dipole coordinate system.  

 

5. plot_equ() : Plots the distribution of the required electric or magnetic field in the 

equatorial plane of the dipole coordinate system.  

 

6. plot_fft_a() : Plots the Dispersion Diagram using values from calculate_fft.mat 

This matlab script was made and run in MATLABr2012a in the VIRGO supercluster at IIT 

Madras.  Note that main.m needs access to igrf.m and the set of functions required to extract 

magnetic field data from the IGRF model. Please see the ref: [17] to download the igrf() module 

compatible with MATLAB.  
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6.1.1.  main.m 

%% 3D-FDTD Implementation for Generating Alfven Wave Noise 
%  InOrthogonal Dipole Coordinates 
%  Uses the following: 
%  Global Core Plasma Model Version 2.4 
%  IGRF Model MATLAB (Year ?)  
%   
% 
% Program By Nithin Sivadas, AE08B014 
% Guide : Prof. Harishankar Ramachandran 
%       : Dr. T. M. Muruganandam 
% 
% Last Updated on : 12th June 2013  

  

  
%% 
clc; 
clear all; close all; 
tic; 

  
%% Important Variables 

     
    % Mass of electron 
    me = 9.10938188*10^-31;  

  
    % Importing Electron Density created from Fortran Code that 

extract 
    % plasma parameters from GCPM Ver. 2.4 
    e_den=importdata('e_den.mat');    

  
    % Time defined for IGRF Model 
    time = datenum([2002 7 17 6 30 0]); 

  
    % Number of iterations (for entire simulation) 
    time_tot=16384*16; 

  
    % Defining the wavelength of the source 
    frequency=3000; % in Hz 

         
%% Defining the Simulation space 

  
% Extent of radiation belts 
% Spatial grid step length 

  
    dn=-0.01; 
    dm=2.3026e-04; 
    dp=2*pi/4; 

  
% Size of the grid 
    Li=0.8; 
    Lf=10; 
    Ls=1.4286; 
    Sn=-1/Ls+1*dn; 
    Sn1=-1/Ls-1*dn; 
    Sm=0.4755; 
    Sm1=-0.4674; 
    Sp=0; 
    Sp1=2*pi; 
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    mu(1)=Sm1; 
    Nm=round((Sm-Sm1)/dm)+1; 
    for i=2:1:Nm 
        mu(i)=mu(i-1)+dm; 
    end; 
    nu=Sn1:dn:Sn; 
    phi=Sp:dp:Sp1; 

  
% Number of cells along the n and m directions 
    Nn=size(nu); 
    Nn=Nn(2); 
    Nm=size(mu); 
    Nm=Nm(2); 
    Np=size(phi); 
    Np=Np(2); 

  
%% 
% Defining the speed of light 
    c=3e+8; 

  
%% 
% Defining source locations and distribution 

  
    nsource = 2; 
    msource = 2; 
    psource = round(Np/2); 

  
%% Scale factors and coordinate transformation 
    RE=6371.2*10^3; 

  
    [hn_0_0, hp_0_0, hm_0_0]=calculateh(nu,mu,Np,RE); 
    [hn_1_1, hp_1_1, 

hm_1_1]=calculateh(nu+(0.5*dn)*ones(1,Nn),mu+(0.5*dm)*ones(1,Nm),Np,R

E); 
    [hn_0_1, hp_0_1, 

hm_0_1]=calculateh(nu,mu+(0.5*dm)*ones(1,Nm),Np,RE); 
    [hn_1_0, hp_1_0, 

hm_1_0]=calculateh(nu+(0.5*dn)*ones(1,Nn),mu,Np,RE); 

  
alpha=(256/27)*(mu'.^2)*(nu.^-4); 
beta=(1+(1+alpha).^0.5).^(2/3); 
gamma=(alpha).^(1/3); 
k=0.5*((beta.^2+beta.*gamma+gamma.^2)./(beta)).^1.5; 
r=-(4*k./((1+k).*(1+(2*k-1).^0.5)))*(diag(RE*(nu.^-1))); 
costheta=((RE^-2)*diag(mu)*(r.^2)); 
sintheta=(1-costheta.^2).^0.5; 
r1=r; 
costheta1=costheta; 
sintheta1=sintheta; 

  
for i=1:1:Np-1 
    r=cat(3,r,r1); 
    costheta=cat(3,costheta,costheta1); 
    sintheta=cat(3,sintheta,sintheta1); 
end 
cosphi=cos(phi); 
sinphi=sin(phi); 

  
for j=1:1:Nn-1 
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    cosphi=cat(1,cosphi,cos(phi)); 
    sinphi=cat(1,sinphi,sin(phi)); 
end; 

  
%% Calculating the B-field from IGRF Model 
% Converting the Geomagnetic coordinates to Geocentric 

  
theta_geo_centric=zeros(Nn,Nm,Np); 
phi_geo_centric=zeros(Nn,Nm,Np); 
Bx=zeros(Nn,Nm,Np); 
By=zeros(Nn,Nm,Np); 
Bz=zeros(Nn,Nm,Np); 
theta_pole=11.018*pi/180; 
phi_pole=289.095*pi/180; 

  
p=1; 
    for i=1:1:Nn 
        for j=1:1:Nm 
        theta_geo_centric(j,i,p)=acos(cos(theta_pole)*costheta1(j,i) 

+ sin(theta_pole)*sintheta1(j,i)*cos(2*pi-phi(p))); 
        if 

costheta1(j,i)<cos(theta_pole)*cos(theta_geo_centric(i,j,p)) 
            disp([' Percentage Complete IGRF Model']); 
            phi_geo_centric(j,i,p)=phi_pole+pi-

asin(sintheta1(j,i)*sin(phi(p))/sin(theta_geo_centric(j,i,p))); 
        else 
            

phi_geo_centric(j,i,p)=phi_pole+asin(sintheta1(j,i)*sin(phi(p))/sin(t

heta_geo_centric(j,i,p)));    
        end; 
        [Bx(i,j,p), By(i,j,p), Bz(i,j,p)]=igrf(time,(0.5*pi-

theta_geo_centric(j,i,p))*180/pi,(phi_geo_centric(j,i,p))*180/pi,(r(j

,i,p))*0.001,'geocentric'); 
        clc; 
        complete1=100*(j/Nm); 
        disp([' Percentage Complete for 1 Nn= ' num2str(complete1, 

'%g') '%']); 

  
        end; 
        clc; 
        complete1=100*(i/Nn); 
        disp([' Percentage Complete IGRF Model= ' num2str(complete1, 

'%g') '%']); 
     end; 

  
for p=2:1:Np 
    Bx(:,:,p)=Bx(:,:,1); 
    By(:,:,p)=By(:,:,1); 
    Bz(:,:,p)=Bz(:,:,1); 
end; 
B0=((Bx.^2+By.^2+Bz.^2).^0.5)*10^-9; 

  

  
%% Defning the permittivity & permeability distribution (air) 
     A=ones(Nn,Nm,Np); 
     A=(e_den')*(me)*10^6;  
     for i=1:1:Np 
         A(:,:,i)=(e_den')*(me)*10^6;  % As electron density is 

number of electrons/cm3 
     end; 
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     mu0 = 4*pi*1e-7; 
     epsilon0 = (1/(36*pi))*1e-9; 
     E_den=A; % Density of electrons in Kg/m^3 
     A=1+(c.^2)*mu0*E_den.*((B0).^-2); 
     epsilon=A*epsilon0; 

  
%% Defining Alfven Wave velocity     
    V1=(epsilon*mu0).^-1; 
%     V1=(ones(Nn,Nm,Np))*(1.339e+08).^2; 
    V1(isnan(V1))=(3*10^8)^2; 

     

  
    [MU, NU, PH] = meshgrid(mu,nu,phi); 

  
%% Courant Stability Factor 
   S=1/(3^(0.5)); 
% S=0.5; 
% contour(r.*sintheta,r.*costheta,MU',Nm,'black'); 
% hold on; 
% contour(r.*sintheta,r.*costheta,NU',Nn,'blue');  

  

  
 %% Initialization of the field matrices 
 Bn=zeros(Nn,Nm,Np); 
 Bm=zeros(Nn,Nm,Np); 
 Bp=zeros(Nn,Nm,Np); 
 En=zeros(Nn,Nm,Np); 
 Em=zeros(Nn,Nm,Np); 
 Ep=zeros(Nn,Nm,Np); 

   

  
%% Temporal grid step obtained 
 V=c; 
 

deltat=S*(min((min(min(abs(hn_0_0(:,:,psource).*dn)))),(min(min(abs(h

m_0_0(:,:,psource).*dm))))))/V; 
 deltat=min(deltat,S*(min(min(abs(hp_0_0(:,:,psource).*dp))))/V); 

  
 %% Defining the variation of conductivies at the boundary for PML 
 % Right now it is set to inactive, as the Ionosphere B.C. is made to 
 % be perfectly reflective. 
 sigma=0*ones(Nn,Nm,Np); 
 PML=round(((-1/5)-Sn1)./dn);%PML Boundary 

  
%  PML_a=10; 
%  PML_tn=size((Sn1:dn:-1/5)'); 
%  PML_tn2=size((-1/1.02:dn:Sn)'); 
%  PML_fn=(PML_a)*(1*(PML_tn(1):-1:1)).^3; 
%  PML_fn2=(PML_a)*(1*(PML_tn2(1)+1:-1:1)).^3; 
%  PML_tm=size((Sm1:dm:Sm1+20*dm)'); 
%  PML_tm2=size((Sm-20*dm:dm:Sm)'); 
%  PML_fm=(PML_a)*(1*(PML_tm(1):-1:1)).^3; 
%  PML_fm2=(PML_a)*(1*(PML_tm(1):-1:1)).^3; 
%  
%  for i=1:1:Nm 
%      for j=1:1:Np 
%          sigma(1:1:PML_tn(1),i,j)=(PML_fn); 
%          sigma(Nn:-1:Nn-PML_tn2(1),i,j)=PML_fn2; 
%      end; 
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%  end; 
%   
%  for i=1:1:Nn 
%      for j=1:1:Np 
%          sigma(i,1:1:PML_tm(1),j)=sigma(i,1:1:PML_tm(1),j)+PML_fm; 
%          sigma(i,Nm:-1:Nm-PML_tm2(1)+1,j)=sigma(i,Nm:-1:Nm-

PML_tm2(1)+1,j)+PML_fm2; 
%      end; 
%  end; 

  
 sigma_star=sigma.*mu0; 

  
%% Gaussian Source Parameters 
Fw=6000;    % Bandwidth of the signal 
Ft=(2*log(2))/(pi*Fw); 
norm=((2*(log(2))^0.5)/(Ft*pi^0.5))^0.5; 
t0=4*Ft; 

  
figure20=figure('visible','off'); 
axes20 = axes('Parent',figure20); 

  
 %% Update loop  
 for u=1:1:time_tot 
     u1=1; 
     u2=Nn-1; 
     u11=1; 
     u21=Nm-1; 
     k1=1; 
     k2=Np-1; 

     
      %Vector update for 3D-FDTD 

     
      Bn(u1:u2,u11+1:u21+1,k1+1:k2+1)=((1-

deltat.*sigma_star(u1:u2,u11+1:u21+1,k1+1:k2+1)./(2*mu0))./(1+deltat.

*sigma_star(u1:u2,u11+1:u21+1,k1+1:k2+1)./(2*mu0))).*Bn(u1:u2,u11+1:u

21+1,k1+1:k2+1)-

(deltat./((hp_0_1(u1:u2,u11+1:u21+1,k1+1:k2+1).*hm_0_1(u1:u2,u11+1:u2

1+1,k1+1:k2+1).*(1+deltat.*sigma_star(u1:u2,u11+1:u21+1,k1+1:k2+1)./(

2*mu0))))).*((dp.^-

1).*(hm_0_1(u1:u2,u11+1:u21+1,k1+1:k2+1).*Em(u1:u2,u11+1:u21+1,k1+1:k

2+1)-hm_0_1(u1:u2,u11+1:u21+1,k1:k2).*Em(u1:u2,u11+1:u21+1,k1:k2))-

(dm.^-

1).*(hp_0_0(u1:u2,u11+1:u21+1,k1+1:k2+1).*Ep(u1:u2,u11+1:u21+1,k1+1:k

2+1)-hp_0_0(u1:u2,u11:u21,k1+1:k2+1).*Ep(u1:u2,u11:u21,k1+1:k2+1))); 
      Bp(u1+1:u2+1,u11+1:u21+1,k1:k2)=((1-

deltat.*sigma_star(u1+1:u2+1,u11+1:u21+1,k1:k2)./(2*mu0))./(1+deltat.

*sigma_star(u1+1:u2+1,u11+1:u21+1,k1:k2)./(2*mu0))).*Bp(u1+1:u2+1,u11

+1:u21+1,k1:k2)-

(deltat./((hm_1_1(u1+1:u2+1,u11+1:u21+1,k1:k2).*hn_1_1(u1+1:u2+1,u11+

1:u21+1,k1:k2).*(1+deltat.*sigma_star(u1+1:u2+1,u11+1:u21+1,k1:k2)./(

2*mu0))))).*((dm.^-

1).*(hn_1_0(u1+1:u2+1,u11+1:u21+1,k1:k2).*En(u1+1:u2+1,u11+1:u21+1,k1

:k2)-hn_1_0(u1+1:u2+1,u11:u21,k1:k2).*En(u1+1:u2+1,u11:u21,k1:k2))-

(dn.^-

1).*(hm_0_1(u1+1:u2+1,u11+1:u21+1,k1:k2).*Em(u1+1:u2+1,u11+1:u21+1,k1

:k2)-hm_0_1(u1:u2,u11+1:u21+1,k1:k2).*Em(u1:u2,u11+1:u21+1,k1:k2))); 
      Bm(u1+1:u2+1,u11:u21,k1+1:k2+1)=((1-

deltat.*sigma_star(u1+1:u2+1,u11:u21,k1+1:k2+1)./(2*mu0))./(1+deltat.

*sigma_star(u1+1:u2+1,u11:u21,k1+1:k2+1)./(2*mu0))).*Bm(u1+1:u2+1,u11

:u21,k1+1:k2+1)-
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(deltat./((hn_1_0(u1+1:u2+1,u11:u21,k1+1:k2+1).*hp_1_0(u1+1:u2+1,u11:

u21,k1+1:k2+1).*(1+deltat.*sigma_star(u1+1:u2+1,u11:u21,k1+1:k2+1)./(

2*mu0))))).*((dn.^-

1).*(hp_0_0(u1+1:u2+1,u11:u21,k1+1:k2+1).*Ep(u1+1:u2+1,u11:u21,k1+1:k

2+1)-hp_0_0(u1:u2,u11:u21,k1+1:k2+1).*Ep(u1:u2,u11:u21,k1+1:k2+1))-

(dp.^-

1).*(hn_1_0(u1+1:u2+1,u11:u21,k1+1:k2+1).*En(u1+1:u2+1,u11:u21,k1+1:k

2+1)-hn_1_0(u1+1:u2+1,u11:u21,k1:k2).*En(u1+1:u2+1,u11:u21,k1:k2))); 

    
      En(u1+1:u2+1,u11:u21,k1:k2)=((1-

deltat.*sigma(u1+1:u2+1,u11:u21,k1:k2).*0.5)./(1+deltat.*sigma(u1+1:u

2+1,u11:u21,k1:k2).*0.5)).*En(u1+1:u2+1,u11:u21,k1:k2)+(((deltat.*(V1

(u1+1:u2+1,u11:u21,k1:k2)))./(hp_1_0(u1+1:u2+1,u11:u21,k1:k2).*hm_1_0

(u1+1:u2+1,u11:u21,k1:k2).*(1+deltat.*sigma(u1+1:u2+1,u11:u21,k1:k2).

*0.5)))).*((dp.^-

1).*(hm_1_0(u1+1:u2+1,u11:u21,k1+1:k2+1).*Bm(u1+1:u2+1,u11:u21,k1+1:k

2+1)-hm_1_0(u1+1:u2+1,u11:u21,k1:k2).*Bm(u1+1:u2+1,u11:u21,k1:k2))-

(dm.^-

1).*(hp_1_1(u1+1:u2+1,u11+1:u21+1,k1:k2).*Bp(u1+1:u2+1,u11+1:u21+1,k1

:k2)-hp_1_1(u1+1:u2+1,u11:u21,k1:k2).*Bp(u1+1:u2+1,u11:u21,k1:k2)));       
      Ep(u1:u2,u11:u21,k1+1:k2+1)=((1-

deltat.*sigma(u1:u2,u11:u21,k1+1:k2+1).*0.5)./(1+deltat.*sigma(u1:u2,

u11:u21,k1+1:k2+1).*0.5)).*Ep(u1:u2,u11:u21,k1+1:k2+1)+(((deltat.*(V1

(u1:u2,u11:u21,k1+1:k2+1)))./(hn_0_0(u1:u2,u11:u21,k1+1:k2+1).*hm_0_0

(u1:u2,u11:u21,k1+1:k2+1).*(1+deltat.*sigma(u1:u2,u11:u21,k1+1:k2+1).

*0.5)))).*((dm.^-

1).*(hn_0_1(u1:u2,u11+1:u21+1,k1+1:k2+1).*Bn(u1:u2,u11+1:u21+1,k1+1:k

2+1)-hn_0_1(u1:u2,u11:u21,k1+1:k2+1).*Bn(u1:u2,u11:u21,k1+1:k2+1))-

(dn.^-

1).*(hm_1_0(u1+1:u2+1,u11:u21,k1+1:k2+1).*Bm(u1+1:u2+1,u11:u21,k1+1:k

2+1)-hm_1_0(u1:u2,u11:u21,k1+1:k2+1).*Bm(u1:u2,u11:u21,k1+1:k2+1))); 

       
      % Source Definition  
      source = 10^-8*exp(1i*2*pi*frequency*deltat*u)*norm*exp(-

((2*log(2)*(t0-u*deltat)^2)/(Ft^2.0))); 

       
      Bp(nsource,msource,:)=Bp(nsource,msource,:)+source; 
      DFT1(1,u)=source; 
      DFT2(u,:)=Bp(nsource,:,psource); 
      EDFT1(1,u)=En(nsource,msource,psource); 
      EDFT2(u,:)=En(nsource,:,psource);   

       
      %Perfect reflecting boundary condition along mu 
      Bn(:,1,:)=0; 
      Bn(:,Nm,:)=0; 
      Bm(:,1,:)=0; 
      Bm(:,Nm,:)=0; 
      Bp(:,1,:)=0; 
      Bp(:,Nm,:)=0; 
      En(:,1,:)=0; 
      En(:,Nm,:)=0; 
      Ep(:,1,:)=0; 
      Ep(:,Nm,:)=0; 

       
     clc; 
     complete=100*(u/time_tot); 
     disp([' Percentage Complete = ' num2str(complete, '%g')]); 

             
 end; 
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%% Defining the number of space and time samples 
NFFT=2^nextpow2(time_tot); 
k=size(mu); 
space_tot=k(2); 
SFFT=2^nextpow2(space_tot); 

  
%% Making the space-samples uniform 
% Converting from \mu coordinates to s coordinate 
DFT3=zeros(time_tot,space_tot); 
EDFT3=zeros(time_tot,space_tot); 
mus=zeros(1,space_tot); 
[hn, hp, hm]=calculateh1(nu,mu,RE); 

  
for i=1:1:k(2)-1 
    mus(i+1)=mus(i)+dm*hm(nsource,i); 
end; 
xx=linspace(0,max(mus),space_tot); 

  
for j=1:time_tot 
    DFT3(j,:)=spline(mus,real(DFT2(j,1:1:Nm)),xx); 
    DFT3(j,:)=DFT3(j,:).*hamming(space_tot,'periodic')'; 
    EDFT3(j,:)=spline(mus,real(EDFT2(j,1:1:Nm)),xx); 
    EDFT3(j,:)=EDFT3(j,:).*hamming(space_tot,'periodic')'; 
end; 
dmus=(max(mus)-0)/(space_tot-1); 
DFT1(1,:)=DFT1(1,:).*hamming(time_tot,'periodic')'; 
EDFT1(1,:)=EDFT1(1,:).*hamming(time_tot,'periodic')'; 
for j=1:space_tot 
    DFT3(:,j)=DFT3(:,j).*hamming(time_tot,'periodic'); 
    EDFT3(:,j)=EDFT3(:,j).*hamming(time_tot,'periodic'); 
end; 

     
%% Downsample the frequency as we are only interested in low 

frequency 
NFFTa=4096; 
x=round(time_tot/NFFTa); 
time_tot_a=time_tot/x; 
deltat_a=deltat*x; 
DFT1a=zeros(1,NFFTa); 
DFT3a=zeros(NFFTa,SFFT); 
DFT2end=DFT2(time_tot,:); 
EDFT1a=zeros(1,NFFTa); 
EDFT3a=zeros(NFFTa,SFFT); 
EDFT2end=EDFT2(time_tot,:); 

  
for i=1:1:SFFT 
    for j=1:1:NFFTa 
        DFT3a(j,i)=real(mean(DFT3((1+(j-1)*x:1:j*x),i))); 
        EDFT3a(j,i)=real(mean(EDFT3((1+(j-1)*x:1:j*x),i))); 
    end; 
end; 

  
for j=1:1:NFFTa 
        DFT1a(j)=real(mean(DFT1(1,(1+(j-1)*x:1:j*x)))); 
        EDFT1a(j)=real(mean(EDFT1(1,(1+(j-1)*x:1:j*x)))); 
end; 

  
%% Generating the Dispersion relations through DFFT 
c1=(((fft((real((DFT3a'))),SFFT)/space_tot)));  % FFT(s) of signal 
c2=abs(fftshift((fft(c1',NFFTa)/time_tot_a)));  % FFT(t) of signal 
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p2=(angle(fftshift((fft(c1',NFFTa)/time_tot_a)))); 
b2=abs(fftshift((fft((real(DFT1a)),NFFTa)/time_tot_a))); % FFT(t) of 

source 

  
c1E=(((fft((real((EDFT3a'))),SFFT)/space_tot)));  % FFT(s) of signal 
c2E=abs(fftshift((fft(c1E',NFFTa)/time_tot_a)));  % FFT(t) of signal 
p2E=(angle(fftshift((fft(c1E',NFFTa)/time_tot_a)))); 
b2E=abs(fftshift((fft((real(EDFT1a)),NFFTa)/time_tot_a))); % FFT(t) 

of source 

  
% Normalising with the FFT of source 
for i=1:SFFT 
    c2(:,i)=c2(:,i)./b2'; 
    c2E(:,i)=c2E(:,i)./b2E'; 
end; 

  
%% Calculating the Shear-Alfven Wave Noise Signal 

  
a=-pi; 
b=pi; 
fmax=1000; 
f1=1/(deltat_a)/2; 
nmax=round(fmax*(NFFTa/2)/f1); 
l=size(NFFTa/2-nmax+1:NFFTa/2+nmax); 
RandSignal=zeros(NFFTa,SFFT); 

  
    prand=a + (b-a).*rand(l(2),SFFT); %Randomizing the phase 
    crand=zeros(NFFTa,SFFT);     
    crand(NFFTa/2-nmax+1:NFFTa/2+nmax,1:1:SFFT)=(abs(c2(NFFTa/2-

nmax+1:NFFTa/2+nmax,1:1:SFFT))).*exp(1i*prand); 

  
    for j=1:1:SFFT 
        crand(NFFTa/2-nmax+1:NFFTa/2+nmax,j)=crand(NFFTa/2-

nmax+1:NFFTa/2+nmax,j).*tukeywin(l(2)); %tukey window to avoid any 

abdrupt jumps in the f-k space 
    end; 

  
    % Alfven-wave Noise  
    RandSignal(1+(i-

1):1:NFFTa*i,1:1:SFFT)=ifft2(fftshift(crand)*SFFT*NFFTa,NFFTa,SFFT,'n

onsymmetric'); 

     

  

  
 %f-k dispersion diagram of the noise 
fftbrand2=(fftshift(fft2(RandSignal/(SFFT*NFFTa),NFFTa,SFFT)));  

  
%% Saving Data 
save ('calculate_fft.mat', 'NFFT', 'SFFT', 'deltat', 'time_tot', 

'dmus', 'mu', 'nu', 'mus', 'msource', 'nsource', 'frequency', 'Fw', 

'NFFTa', 'deltat_a', 'time_tot_a', 'c2','p2','DFT1', 

'DFT2end','RandSignal','fftbrand2','c2E'); 

  
%% Displaying total time taken to run the simulations 
disp([' Total CPU Time = ' num2str(toc, '%g')]); 
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6.1.2.  calculate.m 

function [ hn3,hp3,hm3 ] = calculateh( nu,mu,Np,RE ) 
%calculateh 
%   Calculates the scale factors for the Dipole Coordinate System 
%   Returns a 3-D matrix of scale factors with values at every 

spatial 
%   location in the simulations.  
alpha=(256/27)*(mu'.^2)*(nu.^-4); 
beta=(1+(1+alpha).^0.5).^(2/3); 
gamma=(alpha).^(1/3); 
k=0.5*((beta.^2+beta.*gamma+gamma.^2)./(beta)).^1.5; 
r=-(4*k./((1+k).*(1+(2*k-1).^0.5)))*(diag(RE*(nu.^-1))); 
costheta=((RE^-2)*diag(mu)*(r.^2)); 
sintheta=(1-costheta.^2).^0.5; 

  
hn=((r.^2)./(RE*(sintheta).*(1+3*(costheta).^2).^0.5))'; 
hm=((r.^3)./((RE^2)*(1+3*(costheta).^2).^0.5))'; 
hp=(r.*sintheta)'; 

  
hn3=hn; 
hm3=hm; 
hp3=hp; 
for i=1:1:Np-1 
    hn3=cat(3,hn3,hn); 
    hm3=cat(3,hm3,hm); 
    hp3=cat(3,hp3,hp); 
end 

 

6.1.3. calculateh1.m 

function [ hn,hp,hm ] = calculateh1( nu,mu,RE ) 
%calculateh1 
%   Calculates the scale factors for the Dipole Coordinate System 
%   Returns a 2-D matrix of scale factors with values at every 

spatial 
%   location in the simulations at arbitary phi.  
alpha=(256/27)*(mu'.^2)*(nu.^-4); 
beta=(1+(1+alpha).^0.5).^(2/3); 
gamma=(alpha).^(1/3); 
k=0.5*((beta.^2+beta.*gamma+gamma.^2)./(beta)).^1.5; 
r=-(4*k./((1+k).*(1+(2*k-1).^0.5)))*(diag(RE*(nu.^-1))); 
costheta=((RE^-2)*diag(mu)*(r.^2)); 
sintheta=(1-costheta.^2).^0.5; 

  
hn=((r.^2)./(RE*(sintheta).*(1+3*(costheta).^2).^0.5))'; 
hm=((r.^3)./((RE^2)*(1+3*(costheta).^2).^0.5))'; 
hp=(r.*sintheta)'; 
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6.1.4. plot_mer.m 

function [ ] = 

plot_mer(E,r,sintheta,costheta,psource,RE,PML,Title,Xaxis,Yaxis) 
%Plot the Quantity in Meridional Plane 
%Plots the distribution of Quantity E in the Meridional Plane of the 

Dipole 
%Coordinate system 

  
figure3=figure; 
axes3 = axes('Parent',figure3); 
pcolor(squeeze(r(:,:,psource)).*squeeze(sintheta(:,:,psource))./RE,sq

ueeze(r(:,:,psource)).*squeeze(costheta(:,:,psource))./RE,((E(:,:,pso

urce)')),'Parent',axes3);colorbar; 
shading('interp'); 
view([0 90]); 
title(Title); 
xlabel(Xaxis); ylabel(Yaxis); 
colorbar; 
% caxis([-6.96e-10 6.96e-10]); 
hold on; 
plot (cos(0:0.1:2*pi+0.1),sin(0:0.1:2*pi+0.1),'white'); 
hold on; 
plot(squeeze(r(:,PML,psource)).*squeeze(sintheta(:,PML,psource))./RE,

squeeze(r(:,PML,psource)).*squeeze(costheta(:,PML,psource))./RE,'whit

e'); 
hold off; 

  
end 

 

6.1.5. plot_equ.m 

function [ ] = plot_equ(E,r,sinphi,cosphi,m1,RE,Title,Xaxis,Yaxis) 
%Plot the Quantity in Meridional Plane 
%Plots the distribution of Quantity E in the Meridional Plane of the 

Dipole 
%Coordinate system 

  
figure3=figure; 
axes3 = axes('Parent',figure3); 
pcolor(squeeze(r(m1,:,:)).*(cosphi)./RE,squeeze(r(m1,:,:)).*(sinphi).

/RE,(squeeze(E(:,m1,:))),'Parent',axes3);colorbar; 
shading('interp'); 
view([0 90]); 
title(Title); 
xlabel(Xaxis); ylabel(Yaxis); 
colorbar; 
hold on; 
plot (cos(0:0.1:2*pi+0.1), sin(0:0.1:2*pi+0.1),'white'); 
hold off; 

  
end 
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6.1.6. plot_fft_a.m 

function [ ] = plot_fft_a( ) 
%PLOT_FFT_A Plots the Dispersion Diagram using values from 

calculate_fft.mat 

  
% Loading variables 
 load('calculate_fft.mat', 'NFFT', 'SFFT', 'deltat', 'time_tot', 

'dmus', 'mu', 'nu', 'mus', 'msource', 'nsource', 'frequency', 'Fw'); 
 load('calculate_fft.mat', 'NFFTa', 'deltat_a', 'time_tot_a', 'c2'); 

  
fmax=frequency+Fw/2; 
Lsource=-1/nu(nsource); 
musource=mu(msource); 
% Creating the axes points to display in the Dispersion diagram 
f=(1/(deltat_a))*linspace(-0.5,0.5,NFFTa); 
K=(1/dmus)*linspace(-0.5,0.5,SFFT); 
f1=1/(deltat_a)/2; 
nmax=round(fmax*(NFFTa/2)/f1); 
% Plotting the dispersion diagram 
figure; 
surf(K(1:SFFT),f(NFFTa/2-nmax:NFFTa/2+nmax),(log(c2(NFFTa/2-

nmax:NFFTa/2+nmax,1:SFFT)))); 
colorbar;shading interp;view ([0 90]); 
ylim([0 fmax]); 
xlim([min(K) max(K)]); 
title(['|Space-TimeFFT (B_\phi(x,t))| [L_s=',num2str(Lsource,3),'; 

\mu_s=',num2str(musource,3),'; t_f = 

',num2str(time_tot_a*deltat_a*10^3,4),' ms; x_f = 

',num2str(max(mus)*10^-3,6),' km; f_c = ',num2str(frequency,4),' Hz; 

f_F_W_H_M = ',num2str(Fw,4),' Hz]'],'FontSize',13); 
xlabel('Wavenumber \kappa (m^-^1)','FontSize',11); ylabel('Frequency 

\omega (Hz)','FontSize',10); 

  
end 
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6.2. Extracting plasma density from GCPM Ver 2.4 

The following FORTRAN (gfortran compiler) code had to be used to extract data from GCPM 

ver 2.4. The functions required for the FORTRAN code can be downloaded from the ref: [18]. 

6.2.1. Input file: input.txt 

2002197   #itime 

6 30 0  #ihr,imin,isec 

4.0    #akp 

6371200   #RE in meters 

-0.01 0.001 0.25  #dn,dm,dp (where dp is in units of 2*pi) 

0.8 10   #Li,Lf 

1 -1   #Sm,Sm1 

0 1   #Sp,Sp1 in units of 2*pi 

6.2.2. main1.for 

c Program: main1.for 

c This program outputs the plasma density in the  

c plasmasphere for an entire nu-mu plane. 

c Input: ../input/input.txt 

c Output: ../output/e_den.dat 

c  

c Author : Nithin Sivadas 

c Date : 26th Jan 2013  

 

 Program main 

c 

 real, parameter :: pi = 4*atan(1.0)  

 real*4 outn(4) 

 real*4 alatr,amlt,akp,RE 

 real*4 dn,dm,dp,Li,Lf,Sn,Sn1,Sm,Sm1,Sp1,Sp 

 integer*4 itime(2),ihr,imin,isec,i,j,q,Nn,Nm,Np 

 real, dimension(5000) :: mu,nu,phi 

 real, dimension(5000,5000) :: r,alpha,beta,gamm,k,e_den 

 real, dimension(5000,5000) :: costheta,theta 

 

c Input parameters from Text File Input.txt 

 

 open(unit=1,file='../input/input.txt') 

 read(1,*) itime(1) 
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 read(1,*) ihr, imin, isec 

 read(1,*) akp 

 read(1,*) RE 

 read(1,*) dn,dm,dp 

 read(1,*) Li,Lf 

 read(1,*) Sm,Sm1 

 read(1,*) Sp,Sp1 

 close(unit=1) 

 

 

      itime(2)=(ihr*3600 + imin*60 + isec) * 1000 

 dp =dp*2*pi  

 

 Sn=-1/Li 

     Sn1=-1/Lf 

 

 Sp=Sp*2*pi 

 Sp1=Sp1*2*pi 

  

 Nn=NINT((Sn-Sn1)/dn) + 1 

 Nm=NINT((Sm-Sm1)/dm) + 1 

 Np=NINT((Sp1-Sp)/dp) + 1 

  

 mu(1)=Sm1 

 nu(1)=Sn1 

 phi(1)=Sp 

 

 amlt=16.0 

 

c Printing the acquired inputs on screen 

 print *, 'itime(1) : ',itime(1) 

 print *, 'itime(2) : ',itime(2) 

 print *, 'ihr: ',ihr,' imin: ',imin,' isec: ',isec 

 print *, 'akp: ',akp 

 print *, 'RE: ', RE 

 print *, 'dn: ',dn,' dm: ',dm,' dp: ',dp 

 print *, 'Li: ',Li,' Lf: ',Lf 

 print *, 'Sm: ',Sm,' Sm1: ',Sm1 

 print *, 'Sp: ',Sp,' Sp1: ',Sp1 

 

c Creating the required arrays  

 do i=2,Nm 

  mu(i) = mu(i-1)+dm 
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 end do 

 do j=2,Nn 

  nu(j) = nu(j-1)+dn 

 end do 

 do q=2,Np 

  phi(q) = phi(q-1)+dp 

 end do 

 

c Converting from Dipole to Spherical Coordinates 

 !$OMP DO  

 do i=1,Nn 

 alpha(:,i)=(256.0/27.0)*(mu**2.0)/(nu(i)**4.0) 

 beta(:,i)=(1+(1+alpha(:,i))**0.5)**(2.0/3.0) 

 gamm(:,i)=(alpha(:,i))**(1.0/3.0) 

 k(:,i)=((beta(:,i)**2+beta(:,i)*gamm(:,i)+gamm(:,i)**2))**1.5 

 k(:,i)=0.5*k(:,i)/((beta(:,i))**1.5) 

 r(:,i)=-(4*k(:,i)/((1+k(:,i))*(1+(2*k(:,i)-1)**0.5))) 

 r(:,i)=r(:,i)*(RE/(nu(i))) 

 costheta(:,i)=((1/RE**2.0)*mu*(r(:,i)**2.0)) 

 theta(:,i)=acos(costheta(:,i))-(pi/2.0) 

 end do 

 !$OMP END DO 

 open(unit=1,file='../output/e_den.dat') 

 

c Extracting Plasma density values from GCPM v2.4  

 print *,'Calculation Started' 

 !$OMP DO 

 do i=1,Nm 

  do j=1,Nn 

  call gcpm_v24(itime,r(i,j)/RE,amlt,theta(i,j),akp,outn) 

  e_den(i,j)=outn(1) 

  end do 

  write(1,*) e_den(i,1:Nn) 

 end do 

 !$OMP END DO 

 close(unit=1) 

   

        print *,'Output stored in ../output/' 

 print *,'Matrix Dimensions are Nm: ',Nm,' Nn: ',Nn 

 print *,'*****Run Successful*****' 

 

 end program main 
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6.3. 3-D Particle Trajectory Solver 

This simulation module consists of the following MATLAB script files and functions: 

1. lineartrap.m : This is the main script file, that inputs the required variables from 3-D 

FDTD simulation results to generate the Alfven wave noise, and then solve for the 

particle’s trajectory in the geo-magnetic field with Alfven wave noise superposed on it. 

The programs input is ‘calculate_fft.mat’ and ‘V2.mat’ generated from the 3-D FDTD 

simulations. The output trajectory of the particles and equatorial pitch angle 

distributions are stored in ‘results.mat’.  

  

2. solve1.m() : This is a function that implements the 4-th order runge-kutta algorithm to 

solve for the position and velocity of the particle using only the Newton-Lorentz 

equation of motion. 

 

3. cart2dip() : This is a function that converts Cartesian coordinates to Dipole coordinates. 

 

4. equatorial_pitch(): This function calculates the Equatorial pitch angles of the particle 

whenever it crosses the equatorial plane. It returns the equatorial pitch angle, and the 

time at which it crossed the equatorial plane. 

 

5. velocity(): This function returns the parallel, perpendicular velocities and the pitch 

angle of the particle at every sample point in space. 

 

6. Bfield_1(): This function defines the required dipole magnetic field without 

incorporating any wave perturbations.  

This matlab script was made and run in MATLABr2012a in the VIRGO supercluster at IIT 

Madras. 
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6.3.1. lineartrap.m 

%% Simple Linear Magnetic Trap for a Single Particle 

clc; 
clear all; 

tic; 

% Defining Key Constants/ Parameters 
e=1.66e-19; % Electronic charge in Coulombs 
m=1.625e-27; % Mass of a proton in Kg 
c=3e+8; % Speed of light 
wave_power=6*10^-9; % Defining the RMS power of the alfven wave 

RE=6.3712e+06;      % Mean radius of Earth 

% Definig paramters 
KE=1.0000000; % Energy of the particle in MeV 
Tot_time=2; % Time of running the simulation (in seconds) 

% Defining Simulation Space 

Ls=1.4286; % L-shell of origin of the particles 

samples=20000; % Number of time samples from start of the simulation 

to the end 

% Calculating required variables 
v=c*(1-(KE*(1.602*10^-13)*(m*c^2)^-1+1)^-2)^0.5; % Relativistic 

Velocity 
% Starting point of the particles in terms of Dipole Coordinates 
nsource=-1/Ls; 
msource=0; 
psource=0; 

% Interface variables from 3D-FDTD Simulations 
load('calculate_fft.mat','time_tot_a','deltat_a','mu','c2','SFFT','NF

FTa'); 
load('V2.mat'); 

% Variables required for calculation 
dm=mu(2)-mu(1); 
mu2=-1:dm:1; 
l1=size(mu2); 
SFFT2=l1(2); 
a1=round((mu(1)-mu2(1))/dm+1); 
b1=round((mu(SFFT)-mu2(1))/dm+1); 

%% Calculating the Noise Signal 
fmax=1000; 
f1=1/(deltat_a)/2; 
nmax=round(fmax*(NFFTa/2)/f1); 
p=size(NFFTa/2-nmax+1:NFFTa/2+nmax); 
SFFT1=SFFT; 

for j=1:1:SFFT1 
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        c2(NFFTa/2-nmax+1:NFFTa/2+nmax,j)=c2(NFFTa/2-

nmax+1:NFFTa/2+nmax,j).*tukeywin(p(2)); %tukey window to avoid any 

abdrupt jumps in the f-k space 
    end; 

     
Bp2=zeros(time_tot_a,SFFT2); 
Bp3=zeros(time_tot_a,SFFT2); 
V3=zeros(1,SFFT2); 
Bp_rms=zeros(SFFT2,1); 
crand=zeros(NFFTa,SFFT1); 
RandSignal=zeros(NFFTa,SFFT1); 

  
alpha1=60; % Pitch Angle of the Particle (in degrees)  
for var=1:1:2 

  
% Alfven-wave Noise  
var 
prand=-pi + 2*(pi).*rand(p(2),SFFT1); %Randomized phase 
crand(NFFTa/2-nmax+1:NFFTa/2+nmax,1:1:SFFT1)=(abs(c2(NFFTa/2-

nmax+1:NFFTa/2+nmax,1:1:SFFT1))).*exp(1i*prand); 
RandSignal(1:1:NFFTa,1:1:SFFT1)=ifft2(fftshift(crand)*SFFT1*NFFTa,NFF

Ta,SFFT1,'nonsymmetric'); 
Bp=real(RandSignal);     

  
%% Modifying the Magnetic field noise for the ODE solver 
Bp2(:,a1:1:b1)=Bp(:,1:1:SFFT); 
V3(1,a1:1:b1)=V2(1,1:1:SFFT); 
time=(1:1:time_tot_a)*deltat_a-deltat_a; 
for i=1:1:SFFT2 
    Bp_rms(i,1)=(sum(Bp2(:,i).^2).*deltat_a)/max(time); 
end; 
Bp_power=Bp_rms/(2*4*pi*10^-7); 
Bp_power_set=wave_power*ones(SFFT2,1); 
Bp_rms_set=Bp_power_set*(2*4*pi*10^-7); 

  
for i=1:1:SFFT2 
    Bp3(:,i)=(Bp2(:,i)./(Bp_rms(i)).^0.5)*(Bp_rms_set(i)).^0.5; 
end; 

  
%% Generating E-field noise 
for i=1:1:NFFTa 
    En3(i,:)=Bp3(i,:).*V3.^0.5; 
end; 
alpha=alpha1*pi/180;% Pitch angle in radians             
x0=[Ls*RE 0 0]; 
v0=[0 v*sin(alpha) v*cos(alpha)]; 

     
% Solving the differential equation (Newrton-Lorentz force equation) 
 [T,W]=solve1(time,Tot_time,samples,x0,v0,e,m,c,RE,Bp3,mu2,dm,En3); 
 a=size(W); % The number of samples of the path of the particle 

  
%% Estimating the Equatorial Pitch Angle Distribution 
[eq_pitch,time_pitch] = equatorial_pitch( W,samples,Tot_time ); 
eq_pitch_angle(var)=eq_pitch(1); 
alpha_0(var)=alpha1; 
end; 

  
toc; 
save('results.mat'); 
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6.3.2. solve1.m 

function [T,W] = 

solve1(time,Tot_time,samples,x0,v0,e,m,c,RE,Bp,mu,dm,En) 
%SOLVE1 Implements the 4th Order Runge-Kutta Algorithm 
%   to solve for the position and velocity of the particle using only  
%   the Newton-Lorentz equation of motion. 
options=odeset('RelTol',1e-6,'AbsTol',[1e-6 1e-6 1e-6 1e-6 1e-6 1e-

6]); 
tspan=linspace(0,Tot_time,samples); 
[T, W]=ode45(@lorentzd,tspan, [x0(1) x0(2) x0(3) v0(1) v0(2) 

v0(3)]',options); 

  
function dw = lorentzd(t,w) 
% Loretnzd is a function that represents the first order differential 
% equation of particle motion using the lorentz force equation. It  

% requires the position and velocity of the particle at a particular  

% timestep t. It returns the derivatives of position and velocity at  

% that time instant. 

  
% The first order differential equation that represents the Lorentz 

% force equations 

  
dw=zeros(6,1); 
period=floor(t/max(time)); 
t1=t-period*max(time); 

  
% Converting particle coordinates from cartesian to Dipole 

Coordinates 
[nu1, mu1, phi1]=cart2dip(w(1),w(2),w(3),RE); 

  
% Extracting the E and B field noise value at the position of the 

particle 
A=round((-mu(1)+mu1)/dm)-2:1:round((-mu(1)+mu1)/dm)+2; 
if (isnan(mu1)~=1) 
B_p_temp(1,1:1:5)=interp1(time,Bp(:,round(A)),t1); 
B_p_noise=interp1(mu(round(A)),B_p_temp(1,1:1:5),mu1); 
E_n_temp(1,1:1:5)=interp1(time,En(:,round(A)),t1); 
E_n_noise=interp1(mu(round(A)),E_n_temp(1,1:1:5),mu1); 
else 
B_p_noise=0; 
E_n_noise=0; 
end; 

  
% Converting the particle coordinates from cartesian to spherical 
[phi,theta,r]=cart2sph(w(1),w(2),w(3)); 

  
% Converting the E and B field vectors from dipole to cartesian 

coordinates 
B_x_noise=-sin(phi).*B_p_noise; 
B_y_noise=+cos(phi).*B_p_noise; 
d1=(1+3*cos(theta).^2).^0.5; 
d2=(1-3*cos(theta).^2)/d1; 
E(1)=d2*cos(phi)*E_n_noise; 
E(2)=d2*sin(phi)*E_n_noise; 
E(3)=E_n_noise*1.5*sin(2*theta)./d1; 
B0=3.07*10^-5; 
RE=6.3712e+06; 
r=(w(1).^2+w(2).^2+w(3).^2).^0.5; 
A=-(B0*RE^3)/r^5; 
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B(1)=A*3*w(1)*w(3)-sin(phi).*B_p_noise; 
B(2)=A*3*w(2)*w(3)+cos(phi).*B_p_noise; 
B(3)=A*(2*w(3)^2-w(1)^2-w(2)^2); 
gamma=(1-((w(4).^2+w(5).^2+w(6).^2))/c^2)^-0.5; 

  
dw(1)=w(4); %Vnu Xnu 
dw(2)=w(5); %Vmu Xmu 
dw(3)=w(6); %Vphi Xphi 

  
% Acceleration (increment in velocity) 
dw(4)=(e/(gamma*m))*(E(1)+(B(3)*w(5)-B(2)*w(6))); 
dw(5)=(e/(gamma*m))*(E(2)-(B(3)*w(4)-B(1)*w(6))); 
dw(6)=(e/(gamma*m))*(E(3)+(B(2)*w(4)-B(1)*w(5))); 
end 

   
end 

  

6.3.3. cart2dip.m 

function [ nu,mu,phi ] = cart2dip( X,Y,Z,RE) 
%cart2dip Function that converts from cartesian to Dipole Coordinates 
[phi,theta,r]=cart2sph(X,Y,Z); 
theta=theta-pi/2; 
mu=(cos(theta)).*(RE./r).^2; 
nu=-(RE./r).*(sin(theta)).^2; 
end 

  

 

6.3.4. equatorial_pitch.m 

function [ eq_pitch,time_pitch ] = equatorial_pitch( 

W,samples,Tot_time ) 
%equatorial_pitch This function calculates the Equatorial pitch 

angles 
% of the particle whenever it crosses the equatorial plane. 
dt=Tot_time/samples; 
[V_para, V_perp, pitch_angle] = velocity( W,samples ); 
k=1; 
eq_pitch=0; 
time_pitch=0; 
for i=1:1:samples-1 
    if(W(i,3)*W(i+1,3)<0) 
        equatorial_pitch(k,1:1:11)=pitch_angle(i-5:1:i+5); 
        time_sample(k,1:1:11)=(i-5:1:i+5)*dt; 
        z_coord(k,1:1:11)=W(i-5:1:i+5,3)'; 
        

eq_pitch(k)=interp1(z_coord(k,:),equatorial_pitch(k,:),0,'spline'); 
        

time_pitch(k)=interp1(z_coord(k,:),time_sample(k,:),0,'spline'); 
        k=k+1; 
    end; 
end; 

  
end 
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6.3.5. velocity.m 

function [ V_para, V_perp, pitch_angle ] = velocity( W,samples ) 
%VELOCITY returns the parallel, perpendicular velocities and the 

pitch 
%angle of the particle at every sample point in space. 

  
for i=1:1:samples 
    B(:,i) = Bfield_1([W(i,1), W(i,2), W(i,3)]); 
end; 

  
% Velocity vector along the path 
V(:,1:samples)=W(1:samples,4:6)'; 

  
% Magnitude of velocity along the path 
V_mag=(V(1,:).^2+V(2,:).^2+V(3,:).^2).^0.5; 

  
% Magnetic field intensity along the path 
B_mag=(B(1,:).^2+B(2,:).^2+B(3,:).^2).^0.5; 

  
% Unit vector along the magnetic field 
B_norm(1,:)=B(1,:)./B_mag; 
B_norm(2,:)=B(2,:)./B_mag; 
B_norm(3,:)=B(3,:)./B_mag; 

  
%% Magnitude of Parallel and Perpendicular Velocity to the Magnetic 

field line 
V_para_temp=V.*B_norm;  

  
V_para=V_para_temp(1,:)+V_para_temp(2,:)+V_para_temp(3,:); % Parallel 

velocity 
V_perp=(V_mag.^2-V_para.^2).^0.5; % Perpendicular Velocity 
pitch_angle=(atan(V_perp./V_para))*180/pi; 

  
end 

  

6.3.6. Bfield_1.m 

function B = Bfield(w) 
%Bfied defines the required dipole magnetic field without 

incorporating 
% any wave perturbations 

  
% Parameters for calculating Earth's dipole magnetic field 
B0=3.07*10^-5; 
RE=6.3712e+06; 
r=(w(1).^2+w(2).^2+w(3).^2).^0.5; 
A=-(B0*RE^3)/r^5; 

  
% Mangetic field values in X,Y and Z axis 
B(1)=A*3*w(1)*w(3); 
B(2)=A*3*w(2)*w(3); 
B(3)=A*(2*w(3)^2-w(1)^2-w(2)^2); 

  
end 
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APPENDIX II: Conference Poster 

A poster on this research work will be presented at the 2013 Workshop on ‘Coupling, 

Energetics and Dynamics of Atmospheric Regions (CEDAR)’ to be held at Boulder, 

Colorado, USA (22 – 28 June, 2013). The conference is organized by the University 

Corporation for Atmospheric Research. 

The details of the conference poster are as follows: 

Abstract Title: FDTD Modelling of Low-frequency Shear-Alfven-wave Propagation and 

its Interaction with Trapped Charge Particles in the Magnetosphere  

Abstract: This study presents test particle analysis of the scattering of high energy particles by 

shear Alfven noise in the Van-Allen radiation belts. The Alfven noise was generated by carrying 

out a Finite Difference Time Domain (FDTD) simulation of shear-Alfven-wave modes, using 

realistic values of plasma parameters and perfectly-reflecting ionosphere boundary conditions. 

The purpose of the study is to understand the statistics of high energy particle scattering into 

the near earth region of the ionosphere. 

Authors: Nithin Sivadas, Dr. H. Ramachandran, Dr. T. M. Muruganandam 

Please see the next page for a copy of the invitation letter.  
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